forked from stephanGarland/goldilocks-scraper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
goldilocks_getter.py
547 lines (429 loc) · 15.3 KB
/
goldilocks_getter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#!/usr/bin/env python3
import argparse
import re
import requests
from typing import Dict
from typing import List
import yaml
from bs4 import BeautifulSoup
import kubernetes as k8s
from nested_dict import nested_dict
import pandas as pd
def setup_args():
parser = argparse.ArgumentParser(
description="""
This script scrapes recommendations from Goldilocks for all SOAs
in all namespaces, in all clusters available in the user's .kubeconfig.
"""
)
parser.add_argument(
"-d",
"--domain",
help="domain where goldilocks is installed, e.g. foo.net",
required=True
)
parser.add_argument(
"-f",
"--file",
help="Output file to store recommendations in",
required=True
)
parser.add_argument(
"-m",
"--mib",
help="Use MiB instead of GiB for memory units",
action="store_true"
)
parser.add_argument(
"-l",
"--limit",
help="Stat to use for limits - defaults to max",
choices=["min", "max", "mean", "median"],
default="max"
)
parser.add_argument(
"-r",
"--request",
help="Stat to use for requests - defaults to median",
choices=["min", "max", "mean", "median"],
default="median"
)
parser.add_argument(
"-t",
"--test",
help="Only collect information from the first cluster to speed up testing",
action="store_true"
)
args = parser.parse_args()
return args
def get_clusters(env: str, test: bool = False) -> List[str]:
"""Gets prod k8s clusters.
Uses the user's kubeconfig file to get all clusters available, and then
filters to the user's desired environment. If the _ in the call to
list_kube_config_contexts() is replaced with a variable, the active context
will also be returned.
Args:
env: A filter to be used for startswith() - {prod, stage, test}.
test: Only returns the first cluster.
Raises:
Nothing.
Returns:
A list of prod k8s clusters.
"""
contexts, _ = k8s.config.list_kube_config_contexts()
filtered_contexts = [x["name"] for x in contexts if x["name"].startswith(env)]
if test:
return filtered_contexts[:1]
return filtered_contexts
def get_namespaces(cluster: str) -> List[str]:
"""Gets namespaces with Goldilocks.
Gets namespaces from a given k8s cluster that have Goldilocks enabled.
Args:
cluster: k8s cluster name
Raises:
Nothing.
Returns:
A list of namespaces in the cluster that have Goldilocks enabled.
"""
client = k8s.client.CoreV1Api(
api_client=k8s.config.new_client_from_config(
context=cluster
)
)
namespaces = client.list_namespace()
filtered_namespaces = []
for pod in [x.metadata for x in namespaces.items if x.metadata.labels]:
if pod.labels["goldilocks.fairwinds.com/enabled"]:
filtered_namespaces.append(pod.name)
return filtered_namespaces
def get_html(
cluster: str,
domain: str,
namespace: str
) -> bytes:
"""Gets HTML output for a namespace from Goldilocks.
Uses requests to get an HTML page from Goldilocks for a specified namespace.
Args:
cluster: The k8s cluster.
domain: The domain where Goldilocks is installed.
namespace: The requested namespace.
Raises:
SystemExit in response to a Requests error.
Returns:
Bytes from Goldilocks.
"""
# This may need to be adjusted depending on your naming scheme.
cluster_name = "-".join(cluster.split("-")[:-1])
try:
endpoint = f"https://goldilocks-{cluster_name}.{domain}/dashboard/{namespace}"
request = requests.get(endpoint)
except requests.exceptions.ConnectionError:
print(f"Exception raised when connecting to {endpoint}")
raise SystemExit
return request.content
def make_soup(
html: bytes,
qos: str = "Burstable"
) -> Dict[str, str]:
"""Uses BeautifulSoup to return VPA recommendations.
Uses BeautifulSoup to parse a truly horrifying series of DOM navigation
on raw HTML to retrieve Goldilock's recommendations for a given QoS.
Args:
html: bytes from Goldilocks.
qos: Burstable or Guaranteed - defaults to Burstable.
Raises:
AtrributeError: If the DOM path is not found.
Returns:
A Dict[str, str] containing Goldilock's recommendations.
"""
soup = BeautifulSoup(html, "html.parser")
soup_dict = {}
for ele in soup.find_all("code"):
try:
if qos in ele.parent.parent.parent.h5.text:
# I'm so sorry.
new_ele_name = ele.parent.parent.parent.parent.parent.parent.summary.h3.text.strip().split("\n")[1].strip()
soup_dict[new_ele_name] = ele.text
except AttributeError:
print("Unable to navigate the DOM - it may have changed.")
raise SystemExit
return soup_dict
def convert_human_readable_to_bytes(human_bytes: str) -> int:
"""Converts human-readable numbers to bytes.
Converts human-readable numbers like MB, GiB to bytes.
Args:
human_bytes: An input string in human-readable format.
Raises:
Nothing.
Returns:
An int of bytes.
"""
convert_map = {
"k": 10**3,
"m": 10**6,
"g": 10**9,
"t": 10**12,
"ki": 2**10,
"mi": 2**20,
"gi": 2**30,
"ti": 2**40
}
human_bytes_tuple = re.search("([0-9]+)([A-z]+)", human_bytes).groups()
return int(human_bytes_tuple[0]) * convert_map[human_bytes_tuple[1].lower()]
def convert_bytes_to_human_readable(machine_bytes: int, mib: bool = False) -> str:
"""Converts bytes to mebibytes or gibibytes.
Converts bytes (e.g. 1073741824) to human-readable (e.g. 1 [GiB] - unit not included)
Args:
mib: Use MiB (True) or GiB (False) for units.
machine_bytes: An input int of bytes.
Raises:
Nothing.
Returns:
A string of human-readable bytes, e.g. 1 [GiB].
"""
if mib:
multiplicand = 20
else:
multiplicand = 30
return f"{round(machine_bytes, 2)/2**multiplicand}"
def make_useful_dict(mega_dict: nested_dict) -> nested_dict:
"""Makes a nested_dict() with useful information.
Makes a nested_dict() with limits and requests for CPU and memory,
along with cluster and namespace information.
Args:
mega_dict: A nested_dict.
Raises:
Nothing.
Returns:
A nested_dict.
"""
soa_recs = nested_dict()
# First, flatten out a given cluster's items
for k, v in mega_dict.items_flat():
# Example line for a given SOA:
# ['resources:', ' requests:', ' cpu: 108m', ' memory: 5815M', ' limits:', ' cpu: 191m', ' memory: 7134M']
line = v.split("\n")
# Strip out whitespace and split values out, converting to bytes and dropping millicore unit
request_cpu = line[2].split(":")[1].replace(" ", "").replace("m", "")
request_mem = line[3].split(":")[1].replace(" ", "")
request_mem = convert_human_readable_to_bytes(request_mem)
limit_cpu = line[5].split(":")[1].replace(" ", "").replace("m", "")
limit_mem = line[6].split(":")[1].replace(" ", "")
limit_mem = convert_human_readable_to_bytes(limit_mem)
# Fill new nested_dict with values
soa_recs[k[0]]["requests"][k[1]][k[2]]["cpu"] = int(request_cpu)
soa_recs[k[0]]["requests"][k[1]][k[2]]["memory"] = int(request_mem)
soa_recs[k[0]]["limits"][k[1]][k[2]]["cpu"] = int(limit_cpu)
soa_recs[k[0]]["limits"][k[1]][k[2]]["memory"] = int(limit_mem)
return soa_recs
def make_dataframe(
recs: nested_dict,
limit_or_rec: str,
cluster_list: list,
mib: bool
) -> tuple:
"""Makes a dataframe for each resource type and and fills it out.
Makes a Pandas dataframe for CPU and memory, and fills it with usable data from Goldilocks.
Args:
recs: A nested_dict containing Goldilocks' recommendations.
limit_or_rec: {requests, limits} - k8s resource recommendation type.
mib: From args.mib - indicates whether to use Gi[B] or Mi[B].
Raises:
SystemExit if unable to find any recommendations.
Returns:
A tuple of two dataframes.
"""
cpu_values = []
memory_values = []
cpu_columns = ["namespace", "soa", "millicores"]
memory_columns = ["namespace", "soa", "size"]
for cluster in cluster_list:
for k, v in recs[cluster][limit_or_rec].items_flat():
if "memory" in k:
memory_values.append((k[0], k[1], convert_bytes_to_human_readable(v, mib)))
elif "cpu" in k:
cpu_values.append((k[0], k[1], int(v)))
else:
print("Error finding recommendations - can you connect to the cluster?")
raise SystemExit
cpu_df = pd.DataFrame(cpu_values, columns=cpu_columns, dtype=float)
memory_df = pd.DataFrame(
memory_values, columns=memory_columns, dtype=float)
return cpu_df, memory_df
def make_aggregate_dataframes(
cpu_requests_df: pd.DataFrame,
memory_requests_df: pd.DataFrame,
cpu_limits_df: pd.DataFrame,
memory_limits_df: pd.DataFrame,
) -> tuple:
"""Makes aggregate dataframes.
Makes Pandas dataframes and fills them with aggregate info for implementation.
Args:
recs: A nested_dict containing Goldilocks' recommendations.
Raises:
Nothing.
Returns:
A tuple of dataframes.
"""
stats = ["min", "max", "mean", "median"]
# CPU is already in millicores, no need for more precision
cpu_limits_df = cpu_limits_df.groupby(["soa"]).agg({"millicores": stats}).round(0)
cpu_requests_df = cpu_requests_df.groupby(["soa"]).agg({"millicores": stats}).round(0)
memory_requests_df = memory_requests_df.groupby(["soa"]).agg({"size": stats}).round(2)
memory_limits_df = memory_limits_df.groupby(["soa"]).agg({"size": stats}).round(2)
return cpu_requests_df, cpu_limits_df, memory_requests_df, memory_limits_df
def get_recs(domain: str, test: bool = False) -> tuple:
"""Calls most of the functions to get recommendations.
Calls other functions to generate a nested_dict containing all recommendations.
Args:
domain: The domain name where Goldilocks is installed.
test: Passed to get_clusters() to only return the first cluster.
Raises:
Nothing.
Returns:
A tuple with the cluster list and a nested_dict.
"""
cluster_namespaces = {}
mega_dict = nested_dict()
clusters = get_clusters("prod", test)
for cluster in clusters:
cluster_namespaces[cluster] = get_namespaces(cluster)
for cluster_name, namespace_list in cluster_namespaces.items():
print(f"Getting data from {cluster_name}")
for namespace in namespace_list:
html = get_html(cluster_name, domain, namespace)
soup_dict = make_soup(html)
for soa, recs in soup_dict.items():
mega_dict[cluster_name][namespace][soa] = recs
return clusters, mega_dict
def make_resource_dict(
cpu_req_df: pd.DataFrame,
mem_req_df: pd.DataFrame,
cpu_lim_df: pd.DataFrame,
mem_lim_df: pd.DataFrame,
soa: str,
lim_stat: str,
req_stat: str,
mib: bool
) -> dict:
"""Makes a dict to be converted to YAML.
Gets {stat} value from the dataframe (e.g. max),
and creates a dict to be converted to YAML.
Args:
cpu_req_df: A dataframe containing CPU requests.
mem_req_df: A dataframe containing memory requests.
cpu_lim_df: A dataframe containing CPU limits.
mem_lim_df: A dataframe containing memory limits.
soa: A str of the SOA's name to select.
{lim,req}stat: A str of {min, max, mean, median} to select that stat.
mib: From args.mib - indicates whether to use Gi[B] or Mi[B].
Raises:
System Exit if KeyError, indicative of a problem retreiving or parsing the data.
Returns:
A dict of resources.
"""
if args.mib:
unit = "Mi"
else:
unit = "Gi"
try:
soa_dict = nested_dict()
soa_dict["resources"]["limits"]["cpu"] = f"{cpu_lim_df[('millicores'), lim_stat][soa]}m"
soa_dict["resources"]["limits"]["memory"] = f"{mem_lim_df[('size', lim_stat)][soa]}{unit}"
soa_dict["resources"]["requests"]["cpu"] = f"{cpu_req_df[('millicores', req_stat)][soa]}m"
soa_dict["resources"]["requests"]["memory"] = f"{mem_req_df[('size', req_stat)][soa]}{unit}"
except KeyError as e:
print(f"Error finding {soa} - {e}")
raise SystemExit
return soa_dict.to_dict()
def make_yaml_resource_block(soa: dict) -> str:
"""Makes a formatted yaml resource block.
Takes an input dict generated from dataframes,
and formats it as below for inclusion in a Helm chart.
resources:
requests:
cpu: 812m
memory: 4506M
limits:
cpu: 1151m
memory: 4999M
Args:
soa: A dict containing CPU and memory values.
Raises:
Nothing.
Returns:
A formatted string in YAML format.
"""
return f"\n{yaml.dump(soa)}\n"
def make_yaml_dump(
soas: pd.core.indexes.base.Index,
cpu_agg_req_df: pd.DataFrame,
mem_agg_req_df: pd.DataFrame,
cpu_agg_lim_df: pd.DataFrame,
mem_agg_lim_df: pd.DataFrame,
mib: bool,
stat_lim: str = "max",
stat_req: str = "median"
) -> str:
"""Creates a single string of recommendations per SOA.
Creates a single formatted string - not necessarily to YAML spec,
since there are multiple SOAs on the same page - for manual input.
Args:
soas: The index from an aggregate dataframe, which is a list of SOAs.
{cpu,mem}_agg_{req,lim}_df: Dataframes containing aggregates for resources.
mib: From args.mib - indicates whether to use Gi[B] or Mi[B].
stat_{lim,req}: A str of {min, max, mean, median} to select that stat.
Raises:
Nothing.
Returns:
A formatted string of all recommendations.
"""
soa_recs = {}
for soa in soas:
soa_rec = make_resource_dict(
cpu_agg_req_df,
mem_agg_req_df,
cpu_agg_lim_df,
mem_agg_lim_df,
soa,
stat_lim,
stat_req,
mib
)
soa_recs[soa] = soa_rec
return make_yaml_resource_block(soa_recs)
if __name__ == "__main__":
args = setup_args()
print("Initializing...")
clusters, mega_dict = get_recs(args.domain, args.test)
useful_mega_dict = make_useful_dict(mega_dict)
cpu_lim_df, mem_lim_df = make_dataframe(
useful_mega_dict,
"limits",
clusters,
args.mib
)
cpu_req_df, mem_req_df = make_dataframe(
useful_mega_dict,
"requests",
clusters,
args.mib
)
cpu_agg_req_df, cpu_agg_lim_df, mem_agg_req_df, mem_agg_lim_df = make_aggregate_dataframes(
cpu_req_df,
mem_req_df,
cpu_lim_df,
mem_lim_df
)
recs = make_yaml_dump(
cpu_agg_req_df.index,
cpu_agg_req_df,
mem_agg_req_df,
cpu_agg_lim_df,
mem_agg_lim_df,
args.mib,
args.limit,
args.request
)
with open(args.file, "w") as f:
f.write(recs)