-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmerge.py
485 lines (397 loc) · 13.4 KB
/
merge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import gc
import logging
import os
import re
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from pathlib import Path
from typing import Dict, Optional, Tuple
import safetensors.torch
import torch
from tqdm import tqdm
from sd_meh import merge_methods
from sd_meh.model import SDModel
from sd_meh.rebasin import (
apply_permutation,
sdunet_permutation_spec,
step_weights_and_bases,
update_model_a,
weight_matching,
)
logging.getLogger("sd_meh").addHandler(logging.NullHandler())
MAX_TOKENS = 77
NUM_INPUT_BLOCKS = 12
NUM_MID_BLOCK = 1
NUM_OUTPUT_BLOCKS = 12
NUM_TOTAL_BLOCKS = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + NUM_OUTPUT_BLOCKS
KEY_POSITION_IDS = ".".join(
[
"cond_stage_model",
"transformer",
"text_model",
"embeddings",
"position_ids",
]
)
NAI_KEYS = {
"cond_stage_model.transformer.embeddings.": "cond_stage_model.transformer.text_model.embeddings.",
"cond_stage_model.transformer.encoder.": "cond_stage_model.transformer.text_model.encoder.",
"cond_stage_model.transformer.final_layer_norm.": "cond_stage_model.transformer.text_model.final_layer_norm.",
}
def fix_clip(model: Dict) -> Dict:
if KEY_POSITION_IDS in model.keys():
model[KEY_POSITION_IDS] = torch.tensor(
[list(range(MAX_TOKENS))],
dtype=torch.int64,
device=model[KEY_POSITION_IDS].device,
)
return model
def fix_key(model: Dict, key: str) -> Dict:
for nk in NAI_KEYS:
if key.startswith(nk):
model[key.replace(nk, NAI_KEYS[nk])] = model[key]
del model[key]
return model
# https://github.com/j4ded/sdweb-merge-block-weighted-gui/blob/master/scripts/mbw/merge_block_weighted.py#L115
def fix_model(model: Dict) -> Dict:
for k in model.keys():
model = fix_key(model, k)
return fix_clip(model)
def load_sd_model(model: os.PathLike | str, device: str = "cpu") -> Dict:
if isinstance(model, str):
model = Path(model)
return SDModel(model, device).load_model()
def prune_sd_model(model: Dict) -> Dict:
keys = list(model.keys())
for k in keys:
if (
not k.startswith("model.diffusion_model.")
and not k.startswith("first_stage_model.")
and not k.startswith("cond_stage_model.")
):
del model[k]
return model
def restore_sd_model(original_model: Dict, merged_model: Dict) -> Dict:
for k in original_model:
if k not in merged_model:
merged_model[k] = original_model[k]
return merged_model
def log_vram(txt=""):
alloc = torch.cuda.memory_allocated(0)
logging.debug(f"{txt} VRAM: {alloc*1e-9:5.3f}GB")
def load_thetas(
models: Dict[str, os.PathLike | str],
prune: bool,
device: str,
precision: int,
) -> Dict:
log_vram("before loading models")
if prune:
thetas = {k: prune_sd_model(load_sd_model(m, "cpu")) for k, m in models.items()}
else:
thetas = {k: load_sd_model(m, device) for k, m in models.items()}
if device == "cuda":
for model_key, model in thetas.items():
for key, block in model.items():
if precision == 16:
thetas[model_key].update({key: block.to(device).half()})
else:
thetas[model_key].update({key: block.to(device)})
log_vram("models loaded")
return thetas
def merge_models(
models: Dict[str, os.PathLike | str],
weights: Dict,
bases: Dict,
merge_mode: str,
precision: int = 16,
weights_clip: bool = False,
re_basin: bool = False,
iterations: int = 1,
device: str = "cpu",
work_device: Optional[str] = None,
prune: bool = False,
threads: int = 1,
) -> Dict:
thetas = load_thetas(models, prune, device, precision)
logging.info(f"start merging with {merge_mode} method")
if re_basin:
merged = rebasin_merge(
thetas,
weights,
bases,
merge_mode,
precision=precision,
weights_clip=weights_clip,
iterations=iterations,
device=device,
work_device=work_device,
threads=threads,
)
else:
merged = simple_merge(
thetas,
weights,
bases,
merge_mode,
precision=precision,
weights_clip=weights_clip,
device=device,
work_device=work_device,
threads=threads,
)
return un_prune_model(merged, thetas, models, device, prune, precision)
def un_prune_model(
merged: Dict,
thetas: Dict,
models: Dict,
device: str,
prune: bool,
precision: int,
) -> Dict:
if prune:
logging.info("Un-pruning merged model")
del thetas
gc.collect()
log_vram("remove thetas")
original_a = load_sd_model(models["model_a"], device)
for key in tqdm(original_a.keys(), desc="un-prune model a"):
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in merged.keys():
merged.update({key: original_a[key]})
if precision == 16:
merged.update({key: merged[key].half()})
del original_a
gc.collect()
log_vram("remove original_a")
original_b = load_sd_model(models["model_b"], device)
for key in tqdm(original_b.keys(), desc="un-prune model b"):
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in merged.keys():
merged.update({key: original_b[key]})
if precision == 16:
merged.update({key: merged[key].half()})
del original_b
return fix_model(merged)
def simple_merge(
thetas: Dict[str, Dict],
weights: Dict,
bases: Dict,
merge_mode: str,
precision: int = 16,
weights_clip: bool = False,
device: str = "cpu",
work_device: Optional[str] = None,
threads: int = 1,
) -> Dict:
futures = []
with tqdm(thetas["model_a"].keys(), desc="stage 1") as progress:
with ThreadPoolExecutor(max_workers=threads) as executor:
for key in thetas["model_a"].keys():
future = executor.submit(
simple_merge_key,
progress,
key,
thetas,
weights,
bases,
merge_mode,
precision,
weights_clip,
device,
work_device,
)
futures.append(future)
for res in futures:
res.result()
log_vram("after stage 1")
for key in tqdm(thetas["model_b"].keys(), desc="stage 2"):
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in thetas["model_a"].keys():
thetas["model_a"].update({key: thetas["model_b"][key]})
if precision == 16:
thetas["model_a"].update({key: thetas["model_a"][key].half()})
log_vram("after stage 2")
return fix_model(thetas["model_a"])
def rebasin_merge(
thetas: Dict[str, os.PathLike | str],
weights: Dict,
bases: Dict,
merge_mode: str,
precision: int = 16,
weights_clip: bool = False,
iterations: int = 1,
device="cpu",
work_device=None,
threads: int = 1,
):
# WARNING: not sure how this does when 3 models are involved...
model_a = thetas["model_a"].clone()
perm_spec = sdunet_permutation_spec()
logging.info("Init rebasin iterations")
for it in range(iterations):
logging.info(f"Rebasin iteration {it}")
log_vram(f"{it} iteration start")
new_weights, new_bases = step_weights_and_bases(
weights,
bases,
it,
iterations,
)
log_vram("weights & bases, before simple merge")
# normal block merge we already know and love
thetas["model_a"] = simple_merge(
thetas,
new_weights,
new_bases,
merge_mode,
precision,
False,
device,
work_device,
threads,
)
log_vram("simple merge done")
# find permutations
perm_1, y = weight_matching(
perm_spec,
model_a,
thetas["model_a"],
max_iter=it,
init_perm=None,
usefp16=precision == 16,
device=device,
)
log_vram("weight matching #1 done")
thetas["model_a"] = apply_permutation(perm_spec, perm_1, thetas["model_a"])
log_vram("apply perm 1 done")
perm_2, z = weight_matching(
perm_spec,
thetas["model_b"],
thetas["model_a"],
max_iter=it,
init_perm=None,
usefp16=precision == 16,
device=device,
)
log_vram("weight matching #2 done")
new_alpha = torch.nn.functional.normalize(
torch.sigmoid(torch.Tensor([y, z])), p=1, dim=0
).tolist()[0]
thetas["model_a"] = update_model_a(
perm_spec, perm_2, thetas["model_a"], new_alpha
)
log_vram("model a updated")
if weights_clip:
clip_thetas = thetas.copy()
clip_thetas["model_a"] = model_a
thetas["model_a"] = clip_weights(thetas, thetas["model_a"])
return thetas["model_a"]
def simple_merge_key(progress, key, thetas, *args, **kwargs):
with merge_key_context(key, thetas, *args, **kwargs) as result:
if result is not None:
thetas["model_a"].update({key: result.detach().clone()})
progress.update()
def merge_key(
key: str,
thetas: Dict,
weights: Dict,
bases: Dict,
merge_mode: str,
precision: int = 16,
weights_clip: bool = False,
device: str = "cpu",
work_device: Optional[str] = None,
) -> Optional[Tuple[str, Dict]]:
if work_device is None:
work_device = device
if KEY_POSITION_IDS in key:
return
for theta in thetas.values():
if key not in theta.keys():
return
if "model" in key:
current_bases = bases
if "model.diffusion_model." in key:
weight_index = -1
re_inp = re.compile(r"\.input_blocks\.(\d+)\.") # 12
re_mid = re.compile(r"\.middle_block\.(\d+)\.") # 1
re_out = re.compile(r"\.output_blocks\.(\d+)\.") # 12
if "time_embed" in key:
weight_index = 0 # before input blocks
elif ".out." in key:
weight_index = NUM_TOTAL_BLOCKS - 1 # after output blocks
elif m := re_inp.search(key):
weight_index = int(m.groups()[0])
elif re_mid.search(key):
weight_index = NUM_INPUT_BLOCKS
elif m := re_out.search(key):
weight_index = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + int(m.groups()[0])
if weight_index >= NUM_TOTAL_BLOCKS:
raise ValueError(f"illegal block index {key}")
if weight_index >= 0:
current_bases = {k: w[weight_index] for k, w in weights.items()}
try:
merge_method = getattr(merge_methods, merge_mode)
except AttributeError as e:
raise ValueError(f"{merge_mode} not implemented, aborting merge!") from e
merge_args = get_merge_method_args(current_bases, thetas, key, work_device)
# dealing wiht pix2pix and inpainting models
if (a_size := merge_args["a"].size()) != (b_size := merge_args["b"].size()):
if a_size[1] > b_size[1]:
merged_key = merge_args["a"]
else:
merged_key = merge_args["b"]
else:
merged_key = merge_method(**merge_args).to(device)
if weights_clip:
merged_key = clip_weights_key(thetas, merged_key, key)
if precision == 16:
merged_key = merged_key.half()
return merged_key
def clip_weights(thetas, merged):
for k in thetas["model_a"].keys():
if k in thetas["model_b"].keys():
merged.update({k: clip_weights_key(thetas, merged[k], k)})
return merged
def clip_weights_key(thetas, merged_weights, key):
t0 = thetas["model_a"][key]
t1 = thetas["model_b"][key]
maximums = torch.maximum(t0, t1)
minimums = torch.minimum(t0, t1)
return torch.minimum(torch.maximum(merged_weights, minimums), maximums)
@contextmanager
def merge_key_context(*args, **kwargs):
result = merge_key(*args, **kwargs)
try:
yield result
finally:
if result is not None:
del result
def get_merge_method_args(
current_bases: Dict,
thetas: Dict,
key: str,
work_device: str,
) -> Dict:
merge_method_args = {
"a": thetas["model_a"][key].to(work_device),
"b": thetas["model_b"][key].to(work_device),
**current_bases,
}
if "model_c" in thetas:
merge_method_args["c"] = thetas["model_c"][key].to(work_device)
return merge_method_args
def save_model(model, output_file, file_format) -> None:
logging.info(f"Saving {output_file}")
if file_format == "safetensors":
safetensors.torch.save_file(
model if type(model) == dict else model.to_dict(),
f"{output_file}.safetensors",
metadata={"format": "pt"},
)
else:
torch.save({"state_dict": model}, f"{output_file}.ckpt")