-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathknn.py
68 lines (56 loc) · 1.52 KB
/
knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import math
import random
import operator
import unicsvcode
def shuffle(idata):
random.shuffle(idata)
train_data=idata[:int(0.7*30)]
test_data=idata[int(0.7*30):]
return test_data,train_data
def accuracy(test_data):
correct=0
for i in test_data:
if(i[35]==i[34]):
correct=correct+1;
accuracy=float(correct/len(test_data))*100
return accuracy
def eu(a,b):
d=0.0
for i in range (len(a)-1):
d=d+pow((float(a[i])-float(b[i])),2)
d=math.sqrt(d)
return d
def knn_predict(test_data, train_data, k_value):
for i in test_data:
eu_Distance =[]
knn = []
good = 0
bad = 0
for j in train_data:
eu_dist = eu(i, j)
eu_Distance.append((j[34], eu_dist))
eu_Distance.sort(key = operator.itemgetter(1))
knn = eu_Distance[:k_value]
for k in knn:
if k[0] =='g':
good += 1
else:
bad +=1
if good > bad:
i.append('g')
elif good < bad:
i.append('b')
else:
i.append('NaN')
def accuracy(test_data):
correct=0
for i in test_data:
if(i[35]==i[34]):
correct=correct+1;
accuracy=float(correct/len(test_data))*100
return accuracy
dataset = getdata('ionosphere.csv')
tr_dataset, te_dataset = shuffle(dataset)
knn_predict(test_dataset, train_dataset, 25) #taking k=25
accuracy(te_data)
print(accuracy)