forked from GreatDevelopers/DesignAids
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IndividualSpreadFooting.tex
executable file
·1192 lines (968 loc) · 38.9 KB
/
IndividualSpreadFooting.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%========================== main document start =======================%
\chapter{Individual Spread Footing}
\section{Introduction} Clause 34 of the \citetitle{IS2000} gives the
provisions governing the design of reinforced concrete footings. These
provisions are similar to those given by the \citeauthor{aci1981aci}.
The design of footings in accordance with \citetitle{IS2000} differs
from that by the \citetitle{IS1964} in the following aspects.
\begin{enumerate}[I]
\item Perimeter shear stress must not exceed the allowable value. This
aspect was not given in the \citetitle{IS1964}. But it is similar to
the familiar concept of punching shear stress.
\item Bond-stress-criterion was given in the \citetitle{IS1964}, but it
is omitted in the \citetitle{IS2000}. Instead, development length of
footing bars is required to be checked at the sections where bending
moment is critical.
\item 25\% excess pressure on edge of footing was allowed by the
\citetitle{IS1964} when a footing is eccentrically loaded. This
concession is withdrawn by the \citetitle{IS2000}, thereby adding to
the cost of eccentrically loaded footings.
\end{enumerate}
The \citetitle{IS2000} requires footings to be designed for
the following limit states.
\begin{enumerate}[(a)]
\item Perimeter shear
\item Bending moment
\item Beam shear
\item Development length of footing bars
\item Development length of column bars
\end{enumerate}
\section{Types of Individual Footings} Individual spread footings can
be either square or rectangular in plan, the area of a rectangular
footing with sides $A$ and $B$ being given by,
\begin{equation}
\label{eq:footingArea}
A \times B = \frac{P}{p}
\end{equation}
where $P$ is the column load in $\kn$ and $p$ denotes the net allowable
soil pressure in $\knpms$. In this development, self-weight of footing
may not be considered. This involves only a small error in that, the
weight of the concrete of footing is assumed here to be approximately
equal to the weight of the earth displaced by it. Further, it is assumed
here that the soil pressure under the footing is uniform. This is a
reasonable assumption as discussed elsewhere. Various types of
individual spread footings are shown in
\fig \ref{Types-of-individual-spread-footing}.
%---------------figures--------------------------%
\begin{figure}
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/udf.pdf}
\caption{Uniformly deep footing}
\label{uniformdeepfooting}
\end{subfigure}
%
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/sfb.pdf}
\caption{Sloped footing (slope starting from $D/2$ away from the
edge of column)}
\label{Slopedfooting}
\end{subfigure}
%
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/sfc.pdf}
\caption{Sloped footing (slope starting from the edge of column)}
\label{slopefooting}
\end{subfigure}
%
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/sfd.pdf}
\caption{Stepped footing}
\label{steppedfooting}
\end{subfigure}
\caption{Types of individual spread footing.}
\label{Types-of-individual-spread-footing}
\end{figure}
%-----------------end figure-----------------------%
With the area of footing known from \eqn \ref{eq:footingArea},
dimensions $A$ and $B$ are easily finalise. The only dimension of
footing which remains to be known is the depth ($D$) of the footing.
A common way of design of footing is to assume D, rather generously,
with a view to reduce steel area as well as to help provide fixity to
the column base, in order to be close to the assumptions made in the
frame analysis of superstructure.
\section{Design for Perimeter Shear} Depth of footing is fixed from
the consideration of perimeter shear stress which depends on concrete
quality, being independent of types of reinforce steel. For a square
footing of uniform depth with a square column of side $a$
(\fig \ref{critical perimeter 1-1-1-1}), perimeter shear stress
$\tau_{v}$ is given by
\begin{equation}
\label{eq:perimeterShearStress}
\tau_{v} = \frac{V_{u}} {{b_{0}} \times d}
=\frac{1.5 \times S_{p}} {4(a + d) \times d}
\end{equation}
where
\begin{equation}
\label{eq:perimeterShearForce}
\quad S_{p} = P - p \times (a + d)^2
\end{equation}
and $b_0$ = Perimeter of critical closed section.
The allowable perimeter shear stress ${\tau_{a}}$ (clause 31.6.3 of
the \citetitle{IS2000}) is given by,
%------------------figures---------------------%
\begin{figure}
\centering
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/cp.pdf}
\caption{Critical perimeter 1-1-1-1 in plan for perimeter shear}
\label{critical perimeter 1-1-1-1}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/sh.pdf}
\caption{Section of sloped footing showing reduced depth ${d'}$
for perimeter shear}
\label{sectionslopefooting}
\end{subfigure}
\caption{Perimeter shear for square footing.}
\label{Perimeter-shear-for-square-footing}
\end{figure}
%------------------end figure---------------%
\begin{equation}
\label{eq:allowable2DShearStress}
\tau_{a} = k_{s} . \tau_{c} = k_{s} \times 0.25 \sqrt{f_{ck}}
\end{equation}
where, $f_{ck}$ is to be put in $\npmms$.
$k_{s}$ = 1.0 for square columns and also for rectangular with aspect
ratio $\left( \dfrac{b}{a} \right) \leq {2.0}$. For the condition
$\tau_{v} = \tau_{a}$, \eqn (\ref{eq:perimeterShearStress}) and
(\ref{eq:allowable2DShearStress}) give,
\begin{sagesilent}
var('a,A,d,fck,p,k,consst,alpha')
consst = .067
consst = consst.n(digits=3)
z1=(1-(a/A)**2-2*(a/A)*(d/A)-(d/A)**2)/((a/A)*(d/A)+(d/A)**2)
z2=(consst*fck**(1/2)*alpha)/p
\end{sagesilent}
\begin{equation}
\label{eq:areafck}
\sage{z1}=\sage{z2}=\sage{k} (say)
\end{equation}
For a square sloped footing with a square column of side $a$
(\fig \ref{sectionslopefooting}),
\begin{equation}
\label{eq:shearSquare}
\tau_{v} = \frac{V_{u}}{b_{0} \times d''}
=\frac{1.5 \times {S_p}}{4(a + d) \times d''}
\end{equation}
Assuming $d''$ = $ \alpha . d $, the condition $\tau_{v} = \tau_{a}$
gives,
\begin{equation}
\label{eq:areafckSloped}
\sage{z1}=\sage{z2}=\sage{k}
\end{equation}
$\alpha = 1.0$ for footings of Types ($a$), ($b$) and ($d$)
(\fig \ref{Types-of-individual-spread-footing}),
while $\alpha$ $<$ 1.0 for sloped footings of Type ($c$). The overall
depth of footing is given by,
\begin{sagesilent}
var('D,d,c,phi')
z=d+c+phi
\end{sagesilent}
\begin{equation}
\label{eq:depth-cover}
\sage{D}=\sage{z}
\end{equation}
Here, $d$ is regarded as an average value for either steel layer. For
sloped footings (\fig \ref{sectionslopefooting}), simple geometry
gives,
\begin{equation}
\label{eq:shape}
\alpha = \frac{d''}{d} = \frac{{D_m}}{d} + \frac{D - {D_m}}{d}.
\frac{\left(1 - \dfrac{a}{A} - \dfrac{d}{A}\right)}
{\left(1 - \dfrac{a}{A}\right)}=\dfrac{(c+\phi)}{d}
\end{equation}
\chartm \ref{Dummy chart} is developed on the basis of
\eqn (\ref{eq:areafck}) and (\ref{eq:areafckSloped}) and it
applies to both uniformly deep and sloped square footings. It can also
be used for rectangular footings with rectangular columns by using
average values of $a$ and $A$, provided an equal overhang is left on
all sides of column, which requires,
\begin{sagesilent}
var('b,a,B,A')
z=b-a
z2=B-A
\end{sagesilent}
\begin{equation}
\label{eq:equaloverhang}
\sage{z}=\sage{z2}
\end{equation}
Solution of numerical examples gives an idea that it is possible to
develop thumb rules for fixing depth of footings. It may be noted that
there is no dire need of exactness in fixing the value of depth of
footing, only it should be more than adequate for the actions imposed
on a footing. \tablem \ref{chaptertable}, based on
\eqn (\ref{eq:areafck}), is developed for footings of Types ($a$)
and ($b$) (\fig \ref{Types-of-individual-spread-footing}).It gives
values of $D/A$ for various practicable values of $p$. It is seen that,
for safety in beam shear, these values are to be increased by 10\% in
case of steel types \fefouronefive and \fefivezerozero. For
sloped and stepped footings (Types $c$ and $d$), the depth of footing
given by \tablem \ref{chaptertable} may be increased by 20\%. The
depth at the free end of a footing may be restricted to 150 mm, which
is the minimum prescribed by the ~\citetitle{IS2000} for spread
footings.
%%================== End of My correction ========================%
\section{Design for Moment and Beam Shear}
Section 1-1 in \fig \ref{critical-sections-for-bending-moment-and-beam-shear-in-footing}
is the critical section for bending moment.
The bending moment for full width $B$ is given by,
\begin{sagesilent}
var('p,B,A,a,k,N,mm')
z=(p*B*(A-a))/8
\end{sagesilent}
\begin{equation}
\label{eq:criticalMoment}
M_{1-1}=\sage{z}
\end{equation}
For footings of uniform depth and also stepped footings, the concrete
compression zone is rectangular and charts of Chapter 2 are used to
calculate the required area of steel. But for slopped footings, the
concrete compression zone is of a trapezoidal shape and \chartm
$4.1$ of Chapter $4$ is to be used for finding steel area. \chartm
4.1 can be used for both uniformly deep $(\gamma = 0)$ and sloped
footings. The calculated steel area should not be less than the
specified minimum steel area (\tablem 11.4 of Chapter 11) for spread
footings which may be regarded as slabs for this purpose.
Section 2-2 in \fig \ref{critical-sections-for-bending-moment-and-beam-shear-in-footing}
is the critical section for beam shear. The shear force and moment at
section ${2'-2'}$ for the full width of footing is given by,
\begin{sagesilent}
var('p,B,b,A,a,d')
z=(p*B)*((A-a)/2-d)
z2=(p*(B/2))*(((A-a)/2)-d)**2
\end{sagesilent}
\begin{equation}
\label{eq:shear22}
S_{2-2}=\sage{z}
\end{equation}
\begin{equation}
\label{eq:moment22}
M_{2-2}=\sage{z2}
\end{equation}
\begin{sagesilent}
var('tau_v,V_u')
z=V_u/(b*d)
\end{sagesilent}
%-------------------figure------------------------%
\begin{figure}
\centering
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/criticalsection(a).pdf}
\caption{Plan of sloped footing}
\label{Planofslopedfooting}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/criticalsection(b).pdf}
\caption{Section of sloped footing}
\label{sectionofslopedfooting}
\end{subfigure}
\caption{Critical sections for bending moment and beam shear in
footings.}
\label{critical-sections-for-bending-moment-and-beam-shear-in-footing}
\end{figure}
%--------------------end figure-------------------%
Beam shear stress $\sage{tau_v}$ for footings of uniform depth and
stepped footings is given by,
\begin{equation}
\label{eq:shearstress22}
\sage{tau_v}=\sage{z}= \frac{{1.5} \times S_{2-2}}{bd}
\end{equation}
where, $$b = \text{B for uniformaly deep footings,}$$
$$= \text{a for stepped footing} (\fig \ref{steppedfooting})$$
For sloped footings, clause 40.1.1 of the \citetitle{IS2000} gives,
(-ve sign applies here),
\begin{equation}
\label{eq:clause40.1.1}
\sage{tau_v}=\frac{\quad{V_u}}{b'd'}-\frac{M_u}{b'd'^2}.tan\beta
\end{equation}
where b', d' are shown in \fig \ref{Planofslopedfooting} and
\fig \ref{sectionofslopedfooting} and ${M_u}$ is the ultimate
moment at section 2-2.
\begin{sagesilent}
var('D_m,D,a,A,d')
z=D_m+((D-D_m)*(1-(a/A)-2*(d/A))/(1-(a/A)))
var('phi,c')
z2=c+phi
var('b,B')
z3=b+2*((B-b)/(A-a))*d
be=var('beta')
z4=tan(be)
z5=2*((D-D_m)/(A-a))
z6=2*(D-D_m)/(A-a-D)
\end{sagesilent}
\begin{equation}
\label{eq:ultimatemoment22}
D'=\sage{z}
\end{equation}
\begin{equation}
\label{eq:ultimatemoment22b}
d'=D'-(\sage{z2})
\end{equation}
\begin{equation}
\label{eq:ultimatemoment22c}
b'=\sage{z3} \sage{be}
\end{equation}
For Type (c), \fig \ref{slopefooting} gives,
\begin{equation}
\label{eq:12.19}
\sage{z4}=\sage{z5}
\end{equation}
For Type (b), \fig \ref{Slopedfooting} gives,
\begin{equation}
\label{eq:12.20}
\sage{z4}=\sage{z6}
\end{equation}
\begin{sagesilent}
var('k,tau_a,tau_v,tau_c')
z=k*tau_c
var('V_v')
z2=V_v/(b*d)
\end{sagesilent}
The calculated value of $\sage{tau_v}$ must not exceed the allowable
stress $\sage{tau_a}$, as shear reinforcement is just not provided in
individual footings for reasons of economy, the same as in solid slabs.
The allowable stress in concrete solid slabs $\sage{tau_a}$ is given by,
\begin{equation}
\label{eq:concretesolidslabs}
\sage{tau_a}=\sage{z}
\end{equation}
$\sage{tau_c}$ is given by \tablem 19 of the \citetitle{IS2000}
depending on the steel area provided for moment at the critical section
2-2 (the minimum value of $\sage{tau_c}$ is assumed for
$p_t $$\leq$$ 0.15$ in \tablem 19 and
$$\begin{array}{l@{}l}
&{}k=1.0 \text{ for } D \geq 300 \mm\\
&{}=1.1 \text{ for } D = 250 \mm\\
&{}=1.2 \text{ for } D = 200 \mm\\
&{}=1.25 \text{ for } D = 175 \mm\\
&{}=1.30 \text{ for } D \leq 150 \mm
\end{array}$$
Normally, depth of footing given for perimeter shear
(\chartm \ref{Dummy chart}) is more than adequate
to satisfy the requirements of beam shear. But when steel type
{\fefouronefive} and {\fefivezerozero} are used as reinforcement
beam shear may govern the depth of footing. For stepped footings,
additional checks for moment and beam shear are required to be made for
the portion of the footing of depth $D_m$ (\fig \ref{steppedfooting}).
When section ${1'-1'}$ is the critical section for moment and section
${2'-2'}$ is that for beam shear (\fig \ref{steppedfooting}),
expressions for moment and shear are given as,
\begin{equation}
\label{eq:momentandshear1-1}
M_{1'-1'}=p.B.\frac{(A-a')^2}{B}
\end{equation}
\begin{equation} \label{eq:momentandshear2-2}
S_{2'-2'}=p.B\bigg[\frac{(A-a')^2}{B}-d_m\bigg]
\end{equation}
For finding steel area, \chartm 4.1 (with $\gamma = 0$), may be used,
as the concrete compression zone is of a rectangular shape of width equal
to B. Shear stress $\tau_v$ is given by,
\begin{equation}
\label{eq:Shearstress}
\sage{tau_v}=\sage{z2}=\frac{1.5S_{2-2}}{B.d_m}
\end{equation}
and it must not exceed $\tau_a$ given by \eqn (\ref{eq:concretesolidslabs}),
failing which depth $D_m$ should be suitably increased. Normally
$D_m = 0.30$ $D$ to $0.50$ $D$ is kept in stepped footings and perimeter
shear stress can be checked to be safe by using first principles.
%------------------figure-------------------------------%
\begin{figure}
\centering
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/developmentlength(a).pdf}
\caption{Section of uniformaly and sloped footing}
\label{uniformallydeepfooting}
\end{subfigure}\\
%
\begin{subfigure}[b]{0.5\textwidth}
\includegraphics[width=\textwidth]{images/developmentlength(b).pdf}
\caption{Section of stepped footing}
\label{stepedfoting}
\end{subfigure}
\caption{Development length of footing bars.}
\end{figure}
%------------------end figure---------------------------%
\section{Development Length of Bars}
Column dowel bars should extend into footings for a distance equal to
the development length (\tablem 11.3 of Chapter 11) of column bars
in compression (or in tension when moment in column is large). With the
clause 26.2.2.2 of the \citetitle{IS2000}, column bars can always be adequately
anchored in the footing, whatever be the depth of footing.
\begin{sagesilent}
z=((A-a)/2)-4
\end{sagesilent}
For development length of footing bars, there should be adequate bar
length available $(y)$, either straight or bent-up or both measured from
the face of column. Referring to \fig\ref{uniformallydeepfooting},
for sloped or uniformly deep footings,
\begin{equation}
\label{eq:uniformallydeepfooting}
y= \sage{z} >L_d (tension)
\end{equation}
where 40 $\mm$ is taken as clear cover over ends of bars in footings. If
\eqn \ref{eq:uniformallydeepfooting} is not satisfied, there are
two ways to tackle this problem :
\begin{enumerate}
\item bend bars up, as shown dotted in \fig \ref{uniformallydeepfooting}
\item choose smaller diameter for bars.
\end{enumerate}
For stepped footings \fig \ref{stepedfoting}, the available
straight length of bars beyond the critical section ${1' - 1'}$ is,
\begin{equation}
\label{eq:criticalsection1-1}
y'= \frac{(A-a')}{2}-4 >L_d (tension)
\end{equation}
Normally, full steel area required at section $1 — 1$ is provided
throughout and the steel strength $\sigma_s$ at section 1’ - 1’ may be
less than its maximum value of 0.87 $f_y$. The value of $L_d$ (tension)
should be calculated for the appropriate value of $\sigma_s$.
\section{Selection of Type of Footings}
Footings of uniform depth (Type $a$), though commonly used in practice
for reasons of ease in design and construction, are the costliest. These
consume more concrete quantity (about 25\% to 45\%) than that by sloped
footings. This type is suitable only for small footings with overall
depth being restricted to, say, 300 $\mm$.
For footings of intermediate size, sloped footings with slope starting
from $\dfrac{D}{2}$ away from the edge of column (Type $b$), are quite
suitable. This type is quite economical giving concrete and steel
quantities quite reasonable in comparison with other types. This type
is easy to design as well as to execute. This type is recommended for
most individual footings encountered in buildings with overall depth
greater than 300 $\mm$. The depth at the free end of footing may be kept
at 150 $\mm$, the specified minimum given by the \citetitle{IS2000}. The depth ($D$) of
this type of footing is kept the same as that for footings of uniform
depth.
For large-sized footings, sloped footings with the slope starting from
the edge of column (Type $c$) or stepped footings (Type $d$) are
preferred to other types, as these give the least quantities for
concrete and steel consumption. The stepped footings give the least
steel quantity, while the sloped footings (Type $c$), give the least
concrete quantity. The depth for these types of footings works out to
be about 20\% more than that for footings of uniform depth. Stepped
footings are a little cumbersome in construction, while the sloped
footings are easier in execution, albeit a little more labour-intensive
than the footings of uniform depth.
%====================== first numerical example ======================%
\section{Examples}
\begin{example}
Square footing of Uniform Depth (Type a).\\
\given
\begin{sagesilent}
var('PP,pp,aa,ff_ck,ff_y')
PP = 1000
pp = 200
aa = 400
ff_ck = 15
ff_y = 415
\end{sagesilent}
$$P = \sage{PP} \kn$$
$$p = \sage{pp.n(digits=1)} \knpms$$
$$a = \sage{aa} \mm$$
$$f_{ck} = \sage{ff_ck} \npmms$$
$$f_y = \sage{ff_y} \npmms$$
\required Design the footing\\
\solution
\begin{enumerate}[(i)]
\item \textbf{Dimensions of footing}\\
\begin{sagesilent}
def multipleCheck(number, divisor=25):
# If not directly divisible by divisor.
if (number % divisor) != 0:
y = int(number / divisor) # flooring the value.
y += 1 # Adding 1 for choosing next multiple.
final_value = y * divisor # Multiply the new quotient with divisor.
elif number == 0:
final_value = divisor
else:
final_value = number
return final_value
\end{sagesilent}
\begin{sagesilent}
var('A,P,p')
pp = pp/1000000.n(digits=2)
f(P,p)=P/p
A(P,p)=(f(P,p))^(1/2)
s0=f(P,p)
s=f(PP,pp)
o1=A(PP,pp).n(digits=4)
s1=multipleCheck(o1)
\end{sagesilent}
\eqn \ref{eq:footingArea} gives,
$$A^2 = \sage{s0} = \sage{s.n(digits=5)} \mms$$
$$A = \sage{o1} \mm$$
$$A = \sage{s1} \mm$$
\begin{sagesilent}
p(A)=1000/(A*A)
s2=p(s1)
s2 = s2*1000000.n(digits=4)
\end{sagesilent}
Provided $\sage{s1} \times \sage{s1}$ base and
$$p = \sage{s2} \knpms$$
\begin{sagesilent}
var('AA,const')
const = 4.5
f1(AA) = AA/const.n(digits=3)
s3=f1(A)
s4=f1(s1)
\end{sagesilent}
\tablem \ref{chaptertable} gives for $p = \sage{pp.n(digits=2)}$,
and steel \fefouronefive,
$$D = \sage{f1(A)} = \sage{s4} \mm$$
\begin{sagesilent}
var('alpha')
f2(f_ck,alpha,p)=(10000*.067.n(digits=2)*((f_ck)^(1/2))*alpha)/(p)
s5=f2(f_ck,alpha,p)
s66=f2(ff_ck,1,s2)
f3(a,A)=a/A
s6=f3(a,A)
s7=f3(aa,s1).n(digits=3)
f4(A,q)=q*A
s8=f4(A,s7)
s9=f4(s1,s7)
e1(a,k) =1/(-1/2*(a*k + 2*a - sqrt(a^2*k^2 + 4*k + 4))/(k + 1))
o2 = e1(a,k)
o3 = e1(s7,s66)
o4 = o3.n(digits=2)
s9 = f4(s1,o4)
o9 = s9.n(digits=3)
e3(A,o) = A/o
o7 = e3(A,o4)
s9 = e3(s1,o4)
o5 = f3(A,d)
\end{sagesilent}
\item \textbf{Check for perimeter shear}
\chartm \ref{Dummy chart} gives for,
$$k = \sage{s5} = \sage{s66.n(digits=4)}$$
$$\sage{s6} = \sage{s7}$$
$$\sage{o5} = \sage{o4}$$
$$d = \sage{s9}$$
\begin{sagesilent}
var('cc,pphi')
cc=40
pphi=12
f5(d,c,phi) = d + c + phi
s10 = f5(d,c,phi)
s11 = f5(s9,cc,pphi)
s11 = s11.n(digits=4)
s107= s11.n(digits=4)
s11=multipleCheck(s11,25)
s11 = s11.n(digits=4)
f6(p,B,A,a) = p*B*((A-a)^2)/8
s12 = f6(p,B,A,a)
s13 = f6(s2,s1/1000,s1/1000,aa/1000)
f7(D,c,phi) = D-c-phi
s14=f7(D,c,phi)
s15=f7(s11,cc,pphi)
f8(M_1,A,d) = ((10^5)*1.5*M_1)/(1.5*A*(d**2))
s16=f8(M_1,A,d)
s17=f8(s13,s1,s15)
if(s4>s107):
s109 = multipleCheck(s4)
else:
s109 = multipleCheck(s107)
\end{sagesilent}
\eqn \ref{eq:depth-cover} gives with $c = \sage{cc.n(digits=2)} \mm,
\phi=\sage{pphi.n(digits=2)}$,
$$D = \sage{s10} = \sage{s107} \mm$$
$$D = \sage{s109} \mm \text{ is safe} $$
\item \textbf{Design for moment}
\eqn \ref{eq:criticalMoment} gives,
$$M_{1-1} = \sage{s12} = \sage{s13.n(digits=4)} \knm$$
With rectangular compression zone, \chartm (2.2) gives for,
$$d = \sage{s14} = \sage{s15.n(digits=4)}\mm$$
$$k = \sage{s17.n(digits=4)}$$
\begin{sagesilent}
var('mu')
# f9(mu)=mu/.87
#mu=.0475
#s20=f9(mu)
f9(mu,A,d,f_ck,f_y)=(mu*A*d*f_ck)/(.87.n(digits=3)*f_y)
s18=f9(mu,A,d,f_ck,f_y)
mu = .0475
s19=f9(mu,s1,s15,ff_ck,ff_y).n(digits=4)
f10(A_st,A)=A_st/A
s20=f10(A_st,A)
s21=s1/1000
s22=f10(s19,s21)
f11(D) = 1.2.n(digits=2)*D
s23=f11(D)
#s24=f11(s11)
s24 = f11(s109)
d1= (1000)/(120)
d3=d1.n(digits=0)
w1(d4,r) = (d4*3.14*r**2)/100
d2=w1(d3,6)
d2 = d2.n(digits=2)
if(s22>s24):
q299 = s22
else:
q299 = s24
diaa = 12
m300(dia,qqq) = (3.14*1000*((dia)^2))/(qqq*4)
q300 = m300(dia,qqq)
q301 = m300(diaa,q299)
q301 = int(q301)
m301(dia,qqq) = (3.14*1000*((dia)^2)*1)/(4*qqq)
q302 = m301(dia,qqq)
q303 = m301(diaa,q301).n(digits=4)
d2 = q303
\end{sagesilent}
$$\mu = \sage{mu.n(digits=2)}$$
$$A_{st} = \sage{s18} = \sage{s19} \mms$$
$$\sage{s20} = \sage{s22} \mmspm$$
\tablem 11.4 gives the minimum tension steel area in footings taken
as slab,
$$A_{st}(min) = \sage{s23} = \sage{s24} \mmspm$$
$\phi 12/\sage{q301}$ $c/c$ both ways provided giving an area$ = \sage{q303} \mmspm$\\
which is exceeded by that provided.
\item \textbf{Design for beam shear}\\
\eqn \ref{eq:shear22} gives,
\begin{sagesilent}
f12(p,A,a,d)=p*A*(((A-a)/2)-d)
s25=f12(p,A,a,d)
s26=f12(s2,s1/1000,aa/1000,s15/1000)
f13(S_22,A,d) = (1.5.n(digits=2)*S_22)/(A*d)
s27 = f13(S_22,A,d)
s28 = f13(s26,s1,s15)*1000
f14(A_s,b,d) = (100 * A_s)/(b*d)
s29 = f14(A_s,b,d)
s30 = f14(d2,1000,s15)
\end{sagesilent}
$$S_{2-2} = \sage{s25} =\sage{s26.n(digits=4)} \kn$$
\eqn \ref{eq:shearstress22} gives
$$\tau_{v} = \sage{s27} = \sage{s28} \npmms$$
$$\sage{s29} = \sage{s30}$$
Table 19 of the \citetitle{IS2000} gives,
$$\sage{tau_c}=0.32 \npmms$$
With
$$k = 1.0 $$
\eqn \ref{eq:concretesolidslabs} gives,
$$\sage{tau_a}=\sage{tau_c}=0.32 \npmms$$
With
$$\sage{tau_v}=\sage{tau_a}, D = 50 \mm \text{ is safe}$$
\item \textbf{Check on development length of footing bars}
\tablem (11.13) gives, for footings bars of $\phi$ 12
\fefouronefive),
\begin{sagesilent}
f15(phi) = 55*phi
s31 = f15(phi)
s32 = f15(diaa)
f16(A,a) = (((A-a)/2)-4)
s33 = f16(A,a)
s34 = f16(s1,aa)
s34 = s34.n(digits=3)
\end{sagesilent}
$$L_d(tension) = \sage{s31} = \sage{s32.n(digits=2)} \mm$$
\eqn \ref{eq:uniformallydeepfooting} gives,
$$y = \sage{s33} = \sage{s34} \mm$$
with $y > L_d$ (tension), footing bars will develop full strength at
the critical section.
It may be noted that with $D$ = $\sage{s109}$ $\mm$, this type of footing
of uniform depth is not economical. Footing of Types ($b$) and ($c$)
with sloping depth would be more economical than the present design.
\end{enumerate}
\end{example}
%================= second numerical example ==============%
\begin{example}
Rectangular sloped footing of Type ($c$).\\
\given \\
Same as in Ex. 12.1 with
\begin{sagesilent}
var('aa,bb')
aa = 400
bb = 600
\end{sagesilent}
$$a = \sage{aa} \mm$$
$$b = \sage{bb} \mm$$
and the footing is to have equal overhangs on all sides of column.\\
\required Design the footing\\
\solution
\begin{enumerate}[(i)]
\begin{sagesilent}
m1(P,p) = P/p
q1 = m1(P,p)
q2 = m1(PP,pp).n(digits=4)
m2(a,b) = b - a
q3 = m2(a,b)
q4 = m2(A,B)
q5 = m2(aa,bb)
m3(A) = A*(q5+A)-q2
assume(A>0)
q6 = solve(m3(A),A,solution_dict=true)
q7 = q6[0][A]
q7 = q7.n(digits=4)
q7 = ceil(q7)
m4(A) = q5+A
q8 = m4(q7)
q9 = multipleCheck(q7,5)
q10 = multipleCheck(q8,5)
m5(P,A,B) = P/(A*B)
q11 = m5(P,A,B)
q12 = m5(PP,q9/1000,q10/1000)
q12 = q12.n(digits=3)
\end{sagesilent}
\item \textbf{Dimensions of footing}\\
\eqn \ref{eq:footingArea} gives,
$$A \times B = \sage{q1} = \sage{q2}$$
$$ A\times B= \frac{1000}{0.02}=50000 \mms$$
The equal overhang condition, \eqn \ref{eq:shape} gives,
$$\sage{q3} = \sage{q4} = \sage{q5}$$
The solution of these two equations gives,
$$A = \sage{q7} \mm$$
$$B = \sage{q8} \mm$$
Practical designer may choose $A = \sage{q9} \mm$ and $B = \sage{q10} \mm$
$$p = \sage{q11} = \sage{q12} \knpms$$
\tablem \ref{chaptertable} gives for $p = .02$ and steel \fefouronefive,
\begin{sagesilent}
m6(A,B) = ((A+B)/(QQ(2)*QQ(4.5)))*QQ(1.20)
q13 = m6(A,B)
q14 = m6(q9,q10)
m7(D) = .25*D
q15 = m7(q14)
\end{sagesilent}
$$\frac{D}{A}=\frac{1}{4.5}\times1.20$$
$$D = \sage{q13} = \sage{q14.n(digits=2)} \mm$$
$$D = \sage{q14.n(digits=2)} \mm \text{ and } D_m = \sage{q15.n(digits=2)} \mm$$
\item \textbf{Check for perimeter shear}\\
\begin{sagesilent}
var('c,phi')
cc = 40
pphi = 12
m8(D,c,phi) = D-(c+phi)
q16 = m8(D,c,phi)
q17 = m8(q14,cc,pphi)
m9(D,D_m,d,a,A,c,phi) = (D_m/d)+(((D-D_m)/d)*((1-(a/A)-(d/A))/(1-(a/A))))-((c+phi)/d)
q18 = m9(D,D_m,d,a,A,c,phi)
q19 = m9(q14,q15,q17,aa,q9,cc,pphi).n(digits=2)
m10(f_ck,p,alpha) = (.067.n(digits=2)*10000*((f_ck)^(1/2))*alpha)/p
q20 = m10(f_ck,p,alpha)
q21 = m10(ff_ck,q12,q19).n(digits=3)
m11(a,b,A,B) = ((a+b)/2)/((A+B)/2)
q22 = m11(a,b,A,B)
q23 = m11(aa,bb,q9,q10).n(digits=2)
m12(a,k) = 1/(-1/2*(a*k + 2*a - sqrt(a^2*k^2 + 4*k + 4))/(k + 1))
q24 = m12(a/A,k)
#q25 = m12(q23,q21).n(digits=3)
q25 = m12(q23,q21).n(digits=3)
m13(A) = A/q25
q26 = m13(A)
q27 = m13(q9)
m14(d,c,phi) = d+c+phi
q28 = m14(d,c,phi)
q29 = m14(q27,cc,pphi)
if(q14>q29):
q30 = q14.n(digits=2)
else:
q30 = q29.n(digits=2)
\end{sagesilent}
\eqn \ref{eq:depth-cover} gives, with $c = \sage{cc} \mm$, $\phi = \sage{pphi.n(digits=2)} \mm$,
$$d = \sage{q16} = \sage{q17.n(digits=3)} \mm$$
\eqn \ref{eq:shape} gives,
$$\alpha = \sage{q18} = \sage{q19}$$
\chartm \ref{Dummy chart} gives for,
$$k = \sage{q20} = \sage{q21}$$
$$\frac{a}{A} \text{(average value)}= \sage{q22} = \sage{q23}$$
$$\frac{A}{d} = \sage{q25} \text{ or d } = \sage{q26} = \sage{q27}$$
$$D = \sage{q28} =\sage{q29} \mm$$
$$D = \sage{q30} \text{$\mm$ is safe in perimeter shear.}$$
\item \textbf{Design for moment}\\
\begin{sagesilent}
m15(p,B,A,a) = (p*B*((A-a)^2))/8
q31 = m15(p,B,A,a)
q32 = m15(q12,q10/1000,q9/1000,aa/1000).n(digits=4)
m16(D,D_m,B,b) = (D-D_m)/((B-b)/2)
q33 = m16(D,D_m,B,b)
q34 = m16(q30,q15,q10,bb).n(digits=4)
m17(d,b,tan_beta) = d/(b*tan_beta)
q35 = m17(d,b,tan_beta)
q36 = m17(q17,bb,q34).n(digits=2)
var('M11', latex_name="M_{1-1}")
m18(gamma_f,M11,b,d) = (gamma_f*M11*(10^5))/(QQ(1.5)*b*(d)^2)
q37 = m18(gamma_f,M11,b,d)
q38 = m18(q36,q32,bb,q17)
var('mmu')
mmu = 0.11.n(digits=2)
m19(mu,b,d,f_y,f_ck) = (mu*b*d*f_ck)/(QQ(0.87)*f_y)
q39 = m19(mu,b,d,f_y,f_ck)
q40 = m19(mmu,bb,q17,ff_y,ff_ck).n(digits=4)
m20(A_st,B)=1000*A_st/B
q41 = m20(A_st,B)
q42 = m20(q40,q10)
m21(D,D_m) = (D+D_m)/2
q43 = m21(D,D_m)
q44 = m21(q30,q15).n(digits=3)
m22(D) = 1.2*D
q45 = m22(D)
q46 = m22(q44)
var('diaa')
diaa = 12
if(q42>q46):
q199 = q42
else:
q199 = q46
m200(dia,qqq) = (3.14*1000*((dia)^2))/(qqq*4)
q200 = m200(dia,qqq)
q201 = m200(diaa,q199)
q201 = int(q201)
m201(dia,qqq) = (3.14*1000*((dia)^2)*1)/(4*qqq)
q202 = m201(dia,qqq)
q203 = m201(diaa,q201).n(digits=4)
\end{sagesilent}
\eqn \ref{eq:criticalMoment} gives,
$$M_{1-1} = \sage{q31} = \sage{q32} \knm$$
with trapezoidal compression zone, Chart 4.1 gives for,
$$b = \sage{bb} \mm, d = \sage{q17.n(digits=3)} \mm$$
$$\tan\beta = \sage{q33} = \sage{q34}$$