From 9b98960662288cdb7ecb326f95fd80130715dead Mon Sep 17 00:00:00 2001 From: Kushaan Gupta Date: Sun, 17 Nov 2024 21:40:44 -0500 Subject: [PATCH] remove unused nprojbins var --- neuro_py/ensemble/geodyn.py | 35 ----------------------------------- 1 file changed, 35 deletions(-) diff --git a/neuro_py/ensemble/geodyn.py b/neuro_py/ensemble/geodyn.py index bfed658..e055909 100644 --- a/neuro_py/ensemble/geodyn.py +++ b/neuro_py/ensemble/geodyn.py @@ -139,12 +139,6 @@ def potential_landscape_nd(X_dyn, projbins, domainbins=None, nanborderempty=True latentedges_nrns = [] domainedges_nrns = [] for nnrn in range(nnrns): - if isinstance(projbins, int): - nprojbins = projbins - elif isinstance(projbins[nnrn], int): - nprojbins = projbins[nnrn] - else: - nprojbins = len(projbins[nnrn]) - 1 # bin edges # 1D state space binning of time derivatives across domain # assumes landscape may morph across domain H, bin_edges, _ = binned_statistic_dd( # (nnrns times projbins) x time @@ -171,35 +165,6 @@ def potential_landscape_nd(X_dyn, projbins, domainbins=None, nanborderempty=True if nanborderempty: nonzero_mask = H != 0 - # # shape: projbins x 2 x nbins_domain - # idx_terminal_nonzero = np.asarray(list(zip(*find_terminal_masked_indices( - # nonzero_mask, axis=nnrn)))) # unzip the list - - # # along axis 0 set all values from start to idx_first_nonzero to nan - # if nnrns == 1: - # for t in range(H.shape[1]): - # potential_pos_t[:idx_terminal_nonzero[t][0], t] = np.nan - # potential_pos_t[idx_terminal_nonzero[t][1] + 1:, t] = np.nan - # else: - # for pb in range(nprojbins): - # nrndimslices = [pb] * nnrns - # nrndimslices.append(0) - # for t in range(nbins_domain): - # idx_first_nonzero = idx_terminal_nonzero[pb][0][t] - # idx_last_nonzero = idx_terminal_nonzero[pb][1][t] - - # nrndimslices[-1] = t - # nrndimslices[nnrn] = slice(0, idx_first_nonzero) - - # potential_pos_t[tuple(nrndimslices)] = np.nan - # nrndimslices[nnrn] = slice(idx_last_nonzero + 1, None) - # # print(nrndimslices, potential_pos_t.shape) - # potential_pos_t[tuple(nrndimslices)] = np.nan - - # # if idx_first_nonzero and idx_last_nonzero take up whole axis, then set all values to nan - # if idx_first_nonzero == 0 and idx_last_nonzero == nprojbins - 1: - # nrndimslices[nnrn] = slice(None) - # potential_pos_t[tuple(nrndimslices)] = np.nan for t in range(nbins_domain): nrndimslices = [slice(None)] * nnrns nrndimslices.append(t)