-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathfunc.py
124 lines (103 loc) · 4.71 KB
/
func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import tensorflow as tf
def transformer(batch, chan, flow, U , out_size, name='SpatialTransformer', **kwargs):
def _repeat(x, n_repeats):
with tf.variable_scope('_repeat'):
rep = tf.transpose(
tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1), [1, 0])
rep = tf.cast(rep, 'int32')
x = tf.matmul(tf.reshape(x, (-1, 1)), rep)
return tf.reshape(x, [-1])
def _repeat2(x, n_repeats):
with tf.variable_scope('_repeat'):
rep = tf.expand_dims(tf.ones(shape=tf.stack([n_repeats, ])), 1)
rep = tf.cast(rep, 'int32')
x = tf.matmul(rep, tf.reshape(x, (1, -1)))
return tf.reshape(x, [-1])
def _interpolate(im, x, y, out_size):
with tf.variable_scope('_interpolate'):
# constants
num_batch = tf.shape(im)[0]
height = tf.shape(im)[1]
width = tf.shape(im)[2]
channels = tf.shape(im)[3]
x = tf.cast(x, 'float32')
y = tf.cast(y, 'float32')
height_f = tf.cast(height, 'float32')
width_f = tf.cast(width, 'float32')
out_height = out_size[0]
out_width = out_size[1]
zero = tf.zeros([], dtype='int32')
max_y = tf.cast(tf.shape(im)[1] - 1, 'int32')
max_x = tf.cast(tf.shape(im)[2] - 1, 'int32')
x = tf.cast(_repeat2(tf.range(0, width), height * num_batch), 'float32') + x * 64
y = tf.cast(_repeat2(_repeat(tf.range(0, height), width), num_batch), 'float32') + y * 64
# do sampling
x0 = tf.cast(tf.floor(x), 'int32')
x1 = x0 + 1
y0 = tf.cast(tf.floor(y), 'int32')
y1 = y0 + 1
x0 = tf.clip_by_value(x0, zero, max_x)
x1 = tf.clip_by_value(x1, zero, max_x)
y0 = tf.clip_by_value(y0, zero, max_y)
y1 = tf.clip_by_value(y1, zero, max_y)
dim2 = width
dim1 = width*height
base = _repeat(tf.range(num_batch)*dim1, out_height*out_width)
base_y0 = base + y0*dim2
base_y1 = base + y1*dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# use indices to lookup pixels in the flat image and restore
# channels dim
im_flat = tf.reshape(im, tf.stack([-1, channels]))
im_flat = tf.cast(im_flat, 'float32')
Ia = tf.gather(im_flat, idx_a)
Ib = tf.gather(im_flat, idx_b)
Ic = tf.gather(im_flat, idx_c)
Id = tf.gather(im_flat, idx_d)
# and finally calculate interpolated values
x0_f = tf.cast(x0, 'float32')
x1_f = tf.cast(x1, 'float32')
y0_f = tf.cast(y0, 'float32')
y1_f = tf.cast(y1, 'float32')
wa = tf.expand_dims(((x1_f-x) * (y1_f-y)), 1)
wb = tf.expand_dims(((x1_f-x) * (y-y0_f)), 1)
wc = tf.expand_dims(((x-x0_f) * (y1_f-y)), 1)
wd = tf.expand_dims(((x-x0_f) * (y-y0_f)), 1)
output = tf.add_n([wa*Ia, wb*Ib, wc*Ic, wd*Id])
return output
def _meshgrid(height, width):
with tf.variable_scope('_meshgrid'):
x_t = tf.matmul(tf.ones(shape=tf.stack([height, 1])),
tf.transpose(tf.expand_dims(tf.linspace(-1.0, 1.0, width), 1), [1, 0]))
y_t = tf.matmul(tf.expand_dims(tf.linspace(-1.0, 1.0, height), 1),
tf.ones(shape=tf.stack([1, width])))
x_t_flat = tf.reshape(x_t, (1, -1))
y_t_flat = tf.reshape(y_t, (1, -1))
ones = tf.ones_like(x_t_flat)
grid = tf.concat(axis=0, values=[x_t_flat, y_t_flat, ones])
return grid
def _transform(x_s, y_s, input_dim, out_size):
with tf.variable_scope('_transform'):
num_batch = tf.shape(input_dim)[0]
height = tf.shape(input_dim)[1]
width = tf.shape(input_dim)[2]
num_channels = tf.shape(input_dim)[3]
height_f = tf.cast(height, 'float32')
width_f = tf.cast(width, 'float32')
out_height = out_size[0]
out_width = out_size[1]
x_s_flat = tf.reshape(x_s, [-1])
y_s_flat = tf.reshape(y_s, [-1])
input_transformed = _interpolate(
input_dim, x_s_flat, y_s_flat,
out_size)
output = tf.reshape(
input_transformed, tf.stack([batch, out_height, out_width, chan]))
return output
with tf.variable_scope(name):
dx, dy = tf.split(flow, 2, 3)
output = _transform(dx, dy, U, out_size)
return output