-
Notifications
You must be signed in to change notification settings - Fork 23
/
tracker.py
595 lines (473 loc) · 24.7 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import numpy as np
import cv2
import fhog
import sys
PY3 = sys.version_info >= (3,)
if PY3:
xrange = range
# ffttools
# 离散傅里叶变换、逆变换
def fftd(img, backwards=False, byRow=False):
# shape of img can be (m,n), (m,n,1) or (m,n,2)
# in my test, fft provided by numpy and scipy are slower than cv2.dft
# return cv2.dft(np.float32(img), flags=((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT)) # 'flags =' is necessary!
# DFT_INVERSE: 用一维或二维逆变换取代默认的正向变换,
# DFT_SCALE: 缩放比例标识符,根据数据元素个数平均求出其缩放结果,如有N个元素,则输出结果以1/N缩放输出,常与DFT_INVERSE搭配使用。
# DFT_COMPLEX_OUTPUT: 对一维或二维的实数数组进行正向变换,这样的结果虽然是复数阵列,但拥有复数的共轭对称性
if byRow:
return cv2.dft(np.float32(img), flags=(cv2.DFT_ROWS | cv2.DFT_COMPLEX_OUTPUT))
else:
return cv2.dft(np.float32(img), flags=((cv2.DFT_INVERSE | cv2.DFT_SCALE) if backwards else cv2.DFT_COMPLEX_OUTPUT))
# 实部图像
def real(img):
return img[:, :, 0]
# 虚部图像
def imag(img):
return img[:, :, 1]
# 两个复数,它们的积 (a+bi)(c+di)=(ac-bd)+(ad+bc)i
def complexMultiplication(a, b):
res = np.zeros(a.shape, a.dtype)
res[:, :, 0] = a[:, :, 0] * b[:, :, 0] - a[:, :, 1] * b[:, :, 1]
res[:, :, 1] = a[:, :, 0] * b[:, :, 1] + a[:, :, 1] * b[:, :, 0]
return res
# 两个复数,它们相除 (a+bi)/(c+di)=(ac+bd)/(c*c+d*d) +((bc-ad)/(c*c+d*d))i
def complexDivision(a, b):
res = np.zeros(a.shape, a.dtype)
divisor = 1. / (b[:, :, 0] ** 2 + b[:, :, 1] ** 2)
res[:, :, 0] = (a[:, :, 0] * b[:, :, 0] + a[:, :, 1] * b[:, :, 1]) * divisor
res[:, :, 1] = (a[:, :, 1] * b[:, :, 0] + a[:, :, 0] * b[:, :, 1]) * divisor
return res
def complexDivisionReal(a, b):
res = np.zeros(a.shape, a.dtype)
divisor = 1. / b
res[:, :, 0] = a[:, :, 0] * divisor
res[:, :, 1] = a[:, :, 1] * divisor
return res
# 可以将 FFT 输出中的直流分量移动到频谱的中央
def rearrange(img):
# return np.fft.fftshift(img, axes=(0,1))
assert (img.ndim == 2) # 断言,必须为真,否则抛出异常;ndim 为数组维数
img_ = np.zeros(img.shape, img.dtype)
xh, yh = img.shape[1] // 2, img.shape[0] // 2 # shape[0] 为行,shape[1] 为列
img_[0:yh, 0:xh], img_[yh:img.shape[0], xh:img.shape[1]] = img[yh:img.shape[0], xh:img.shape[1]], img[0:yh, 0:xh]
img_[0:yh, xh:img.shape[1]], img_[yh:img.shape[0], 0:xh] = img[yh:img.shape[0], 0:xh], img[0:yh, xh:img.shape[1]]
return img_
# recttools
# rect = {x, y, w, h}
# x 右边界
def x2(rect):
return rect[0] + rect[2]
# y 下边界
def y2(rect):
return rect[1] + rect[3]
# 限宽、高
def limit(rect, limit):
if rect[0] + rect[2] > limit[0] + limit[2]:
rect[2] = limit[0] + limit[2] - rect[0]
if rect[1] + rect[3] > limit[1] + limit[3]:
rect[3] = limit[1] + limit[3] - rect[1]
if rect[0] < limit[0]:
rect[2] -= (limit[0] - rect[0])
rect[0] = limit[0]
if rect[1] < limit[1]:
rect[3] -= (limit[1] - rect[1])
rect[1] = limit[1]
if rect[2] < 0:
rect[2] = 0
if rect[3] < 0:
rect[3] = 0
return rect
# 取超出来的边界
def getBorder(original, limited):
res = [0, 0, 0, 0]
res[0] = limited[0] - original[0]
res[1] = limited[1] - original[1]
res[2] = x2(original) - x2(limited)
res[3] = y2(original) - y2(limited)
assert (np.all(np.array(res) >= 0))
return res
# 经常需要空域或频域的滤波处理,在进入真正的处理程序前,需要考虑图像边界情况。
# 通常的处理方法是为图像增加一定的边缘,以适应 卷积核 在原图像边界的操作。
def subwindow(img, window, borderType=cv2.BORDER_CONSTANT):
cutWindow = [x for x in window]
limit(cutWindow, [0, 0, img.shape[1], img.shape[0]]) # modify cutWindow
assert (cutWindow[2] > 0 and cutWindow[3] > 0)
border = getBorder(window, cutWindow)
res = img[cutWindow[1]:cutWindow[1] + cutWindow[3], cutWindow[0]:cutWindow[0] + cutWindow[2]]
if (border != [0, 0, 0, 0]):
res = cv2.copyMakeBorder(res, border[1], border[3], border[0], border[2], borderType)
return res
def cutOutsize(num, limit):
if num < 0: num = 0
elif num > limit - 1: num = limit - 1
return int(num)
def extractImage(img, cx, cy, patch_width, patch_height):
xs_s = np.floor(cx) - np.floor(patch_width / 2)
xs_s = cutOutsize(xs_s, img.shape[1])
xs_e = np.floor(cx + patch_width - 1) - np.floor(patch_width / 2)
xs_e = cutOutsize(xs_e, img.shape[1])
ys_s = np.floor(cy) - np.floor(patch_height / 2)
ys_s = cutOutsize(ys_s, img.shape[0])
ys_e = np.floor(cy + patch_height - 1) - np.floor(patch_height / 2)
ys_e = cutOutsize(ys_e, img.shape[0])
return img[ys_s:ys_e, xs_s:xs_e]
# KCF tracker
class KCFTracker:
def __init__(self, hog=False, fixed_window=True, multi_scale=False):
self.lambdar = 0.0001 # regularization; 正则化
self.padding = 2.5 # extra area surrounding the target; 目标扩展出来的区域
self.output_sigma_factor = 0.125 # bandwidth of gaussian target; 高斯目标的带宽
self._multiscale = multi_scale
if multi_scale:
self.template_size = 96 # 模板大小,在计算_tmpl_sz时,较大边长被归一成96,而较小边长按比例缩小
self.scale_padding = 1.0
self.scale_step = 1.05 # default: 1.02,多尺度估计的时候的尺度步长
self.scale_sigma_factor = 0.25
self.n_scales = 33 # default: 33,尺度估计器样本数
self.scale_lr = 0.025
self.scale_max_area = 512
self.scale_lambda = 0.01
if hog == False:
print('HOG feature is forced to turn on.')
elif fixed_window:
self.template_size = 96
self.scale_step = 1
else:
self.template_size = 1
self.scale_step = 1
self._hogfeatures = True if hog or multi_scale else False
if self._hogfeatures: # HOG feature
# VOT
self.interp_factor = 0.012 # linear interpolation factor for adaptation; 自适应的线性插值因子
self.sigma = 0.6 # gaussian kernel bandwidth; 高斯卷积核带宽
# TPAMI #interp_factor = 0.02 #sigma = 0.5
self.cell_size = 4 # HOG cell size; HOG元胞数组尺寸
print('Numba Compiler initializing, wait for a while.')
else: # raw gray-scale image # aka CSK tracker
self.interp_factor = 0.075
self.sigma = 0.2
self.cell_size = 1
self._hogfeatures = False
self._tmpl_sz = [0, 0]
self._roi = [0., 0., 0., 0.]
self.size_patch = [0, 0, 0]
self._scale = 1.
self._alphaf = None # numpy.ndarray (size_patch[0], size_patch[1], 2)
self._prob = None # numpy.ndarray (size_patch[0], size_patch[1], 2)
self._tmpl = None # numpy.ndarray raw: (size_patch[0], size_patch[1]) hog: (size_patch[2], size_patch[0]*size_patch[1])
self.hann = None # numpy.ndarray raw: (size_patch[0], size_patch[1]) hog: (size_patch[2], size_patch[0]*size_patch[1])
# Scale properties
self.currentScaleFactor = 1
self.base_width = 0 # initial ROI widt
self.base_height = 0 # initial ROI height
self.scaleFactors = None # all scale changing rate, from larger to smaller with 1 to be the middle
self.scale_model_width = 0 # the model width for scaling
self.scale_model_height = 0 # the model height for scaling
self.min_scale_factor = 0. # min scaling rate
self.max_scale_factor = 0. # max scaling rate
# self._num = None
# self._den = None
self.sf_den = None
self.sf_num = None
self.s_hann = None
self.ysf = None
#################
### 位置估计器 ###
#################
# 计算一维亚像素峰值
def subPixelPeak(self, left, center, right):
divisor = 2 * center - right - left # float
return (0 if abs(divisor) < 1e-3 else 0.5 * (right - left) / divisor)
# 初始化hanning窗口,函数只在第一帧被执行
# 目的是采样时为不同的样本分配不同的权重,0.5*0.5 是用汉宁窗归一化[0,1],得到矩阵的值就是每样样本的权重
def createHanningMats(self):
hann2t, hann1t = np.ogrid[0:self.size_patch[0], 0:self.size_patch[1]]
hann1t = 0.5 * (1 - np.cos(2 * np.pi * hann1t / (self.size_patch[1] - 1)))
hann2t = 0.5 * (1 - np.cos(2 * np.pi * hann2t / (self.size_patch[0] - 1)))
hann2d = hann2t * hann1t
if self._hogfeatures:
hann1d = hann2d.reshape(self.size_patch[0] * self.size_patch[1])
self.hann = np.zeros((self.size_patch[2], 1), np.float32) + hann1d
#相当于把1D汉宁窗复制成多个通道
else:
self.hann = hann2d
self.hann = self.hann.astype(np.float32)
# 创建高斯峰函数,函数只在第一帧的时候执行(高斯响应)
def createGaussianPeak(self, sizey, sizex):
syh, sxh = sizey / 2, sizex / 2
output_sigma = np.sqrt(sizex * sizey) / self.padding * self.output_sigma_factor
mult = -0.5 / (output_sigma * output_sigma)
y, x = np.ogrid[0:sizey, 0:sizex]
y, x = (y - syh) ** 2, (x - sxh) ** 2
res = np.exp(mult * (y + x))
return fftd(res)
# 使用带宽SIGMA计算高斯卷积核以用于所有图像X和Y之间的相对位移
# 必须都是MxN大小。二者必须都是周期的(即,通过一个cos窗口进行预处理)
def gaussianCorrelation(self, x1, x2):
if self._hogfeatures:
c = np.zeros((self.size_patch[0], self.size_patch[1]), np.float32)
for i in xrange(self.size_patch[2]):
x1aux = x1[i, :].reshape((self.size_patch[0], self.size_patch[1]))
x2aux = x2[i, :].reshape((self.size_patch[0], self.size_patch[1]))
caux = cv2.mulSpectrums(fftd(x1aux), fftd(x2aux), 0, conjB=True)
caux = real(fftd(caux, True))
# caux = rearrange(caux)
c += caux
c = rearrange(c)
else:
# 'conjB=' is necessary!在做乘法之前取第二个输入数组的共轭.
c = cv2.mulSpectrums(fftd(x1), fftd(x2), 0, conjB=True)
c = fftd(c, True)
c = real(c)
c = rearrange(c)
if x1.ndim == 3 and x2.ndim == 3:
d = (np.sum(x1[:, :, 0] * x1[:, :, 0]) + np.sum(x2[:, :, 0] * x2[:, :, 0]) - 2.0 * c) / (
self.size_patch[0] * self.size_patch[1] * self.size_patch[2])
elif x1.ndim == 2 and x2.ndim == 2:
d = (np.sum(x1 * x1) + np.sum(x2 * x2) - 2.0 * c) / (
self.size_patch[0] * self.size_patch[1] * self.size_patch[2])
d = d * (d >= 0)
d = np.exp(-d / (self.sigma * self.sigma))
return d
# 使用第一帧和它的跟踪框,初始化KCF跟踪器
def init(self, roi, image):
self._roi = list(map(float,roi))
assert (roi[2] > 0 and roi[3] > 0)
# _tmpl是截取的特征的加权平均
self._tmpl = self.getFeatures(image, 1)
# _prob是初始化时的高斯响应图
self._prob = self.createGaussianPeak(self.size_patch[0], self.size_patch[1])
# _alphaf是频域中的相关滤波模板,有两个通道分别实部虚部
self._alphaf = np.zeros((self.size_patch[0], self.size_patch[1], 2), np.float32)
if self._multiscale:
self.dsstInit(self._roi, image)
self.train(self._tmpl, 1.0)
# 从图像得到子窗口,通过赋值填充并检测特征
def getFeatures(self, image, inithann, scale_adjust=1.):
extracted_roi = [0, 0, 0, 0]
cx = self._roi[0] + self._roi[2] / 2
cy = self._roi[1] + self._roi[3] / 2
if inithann:
padded_w = self._roi[2] * self.padding
padded_h = self._roi[3] * self.padding
if self.template_size > 1:
# 把最大的边缩小到96,_scale是缩小比例
# _tmpl_sz是滤波模板的大小也是裁剪下的PATCH大小
if padded_w >= padded_h:
self._scale = padded_w / float(self.template_size)
else:
self._scale = padded_h / float(self.template_size)
self._tmpl_sz[0] = int(padded_w / self._scale)
self._tmpl_sz[1] = int(padded_h / self._scale)
else:
self._tmpl_sz[0] = int(padded_w)
self._tmpl_sz[1] = int(padded_h)
self._scale = 1.
if self._hogfeatures:
self._tmpl_sz[0] = int(self._tmpl_sz[0]) // (2 * self.cell_size) * 2 * self.cell_size + 2 * self.cell_size
self._tmpl_sz[1] = int(self._tmpl_sz[1]) // (2 * self.cell_size) * 2 * self.cell_size + 2 * self.cell_size
else:
self._tmpl_sz[0] = int(self._tmpl_sz[0]) // 2 * 2
self._tmpl_sz[1] = int(self._tmpl_sz[1]) // 2 * 2
# 选取从原图中扣下的图片位置大小
extracted_roi[2] = int(scale_adjust * self._scale * self._tmpl_sz[0] * self.currentScaleFactor)
extracted_roi[3] = int(scale_adjust * self._scale * self._tmpl_sz[1] * self.currentScaleFactor)
extracted_roi[0] = int(cx - extracted_roi[2] / 2)
extracted_roi[1] = int(cy - extracted_roi[3] / 2)
# z是当前帧被裁剪下的搜索区域
z = subwindow(image, extracted_roi, cv2.BORDER_REPLICATE)
if z.shape[1] != self._tmpl_sz[0] or z.shape[0] != self._tmpl_sz[1]: # 缩小到96
z = cv2.resize(z, tuple(self._tmpl_sz))
if self._hogfeatures:
mapp = {'sizeX': 0, 'sizeY': 0, 'numFeatures': 0, 'map': 0}
mapp = fhog.getFeatureMaps(z, self.cell_size, mapp)
mapp = fhog.normalizeAndTruncate(mapp, 0.2)
mapp = fhog.PCAFeatureMaps(mapp)
# size_patch为列表,保存裁剪下来的特征图的【长,宽,通道】
self.size_patch = list(map(int, [mapp['sizeY'], mapp['sizeX'], mapp['numFeatures']]))
FeaturesMap = mapp['map'].reshape((self.size_patch[0] * self.size_patch[1], self.size_patch[2])).T # (size_patch[2], size_patch[0]*size_patch[1])
else: # 将RGB图变为单通道灰度图
if z.ndim == 3 and z.shape[2] == 3:
FeaturesMap = cv2.cvtColor(z, cv2.COLOR_BGR2GRAY)
elif z.ndim == 2:
FeaturesMap = z
# 从此FeatureMap从-0.5到0.5
FeaturesMap = FeaturesMap.astype(np.float32) / 255.0 - 0.5
# size_patch为列表,保存裁剪下来的特征图的【长,宽,1】
self.size_patch = [z.shape[0], z.shape[1], 1]
if inithann:
self.createHanningMats()
FeaturesMap = self.hann * FeaturesMap # 加汉宁(余弦)窗减少频谱泄露
return FeaturesMap
# 使用当前图像的检测结果进行训练
# x是当前帧当前尺度下的特征, train_interp_factor是interp_factor
def train(self, x, train_interp_factor):
k = self.gaussianCorrelation(x, x)
# alphaf是频域中的相关滤波模板,有两个通道分别实部虚部
# _prob是初始化时的高斯响应图,相当于y
alphaf = complexDivision(self._prob, fftd(k) + self.lambdar)
# _tmpl是截取的特征的加权平均
self._tmpl = (1 - train_interp_factor) * self._tmpl + train_interp_factor * x
# _alphaf是频域中相关滤波模板的加权平均
self._alphaf = (1 - train_interp_factor) * self._alphaf + train_interp_factor * alphaf
# 检测当前帧的目标
# z是前一帧的训练/第一帧的初始化结果,x是当前帧当前尺度下的特征,peak_value是检测结果峰值
def detect(self, z, x):
k = self.gaussianCorrelation(x, z)
# 得到响应图
res = real(fftd(complexMultiplication(self._alphaf, fftd(k)), True))
# pv:响应最大值 pi:相应最大点的索引数组
_, pv, _, pi = cv2.minMaxLoc(res)
# 得到响应最大的点索引的float表示
p = [float(pi[0]), float(pi[1])]
# 使用幅值做差来定位峰值的位置
if pi[0] > 0 and pi[0] < res.shape[1] - 1:
p[0] += self.subPixelPeak(res[pi[1], pi[0] - 1], pv, res[pi[1], pi[0] + 1])
if pi[1] > 0 and pi[1] < res.shape[0] - 1:
p[1] += self.subPixelPeak(res[pi[1] - 1, pi[0]], pv, res[pi[1] + 1, pi[0]])
# 得出偏离采样中心的位移
p[0] -= res.shape[1] / 2.
p[1] -= res.shape[0] / 2.
# 返回偏离采样中心的位移和峰值
return p, pv
# 基于当前帧更新目标位置
def update(self, image):
# 修正边界
if self._roi[0] + self._roi[2] <= 0: self._roi[0] = -self._roi[2] + 1
if self._roi[1] + self._roi[3] <= 0: self._roi[1] = -self._roi[3] + 1
if self._roi[0] >= image.shape[1] - 1: self._roi[0] = image.shape[1] - 2
if self._roi[1] >= image.shape[0] - 1: self._roi[1] = image.shape[0] - 2
# 跟踪框、尺度框中心
cx = self._roi[0] + self._roi[2] / 2.
cy = self._roi[1] + self._roi[3] / 2.
# 尺度不变时检测峰值结果
loc, peak_value = self.detect(self._tmpl, self.getFeatures(image, 0, 1.0))
# 因为返回的只有中心坐标,使用尺度和中心坐标调整目标框
# loc是中心相对移动量
self._roi[0] = cx - self._roi[2] / 2.0 + loc[0] * self.cell_size * self._scale * self.currentScaleFactor
self._roi[1] = cy - self._roi[3] / 2.0 + loc[1] * self.cell_size * self._scale * self.currentScaleFactor
# 使用尺度估计
if self._multiscale:
if self._roi[0] >= image.shape[1] - 1: self._roi[0] = image.shape[1] - 1
if self._roi[1] >= image.shape[0] - 1: self._roi[1] = image.shape[0] - 1
if self._roi[0] + self._roi[2] <= 0: self._roi[0] = -self._roi[2] + 2
if self._roi[1] + self._roi[3] <= 0: self._roi[1] = -self._roi[3] + 2
# 更新尺度
scale_pi = self.detect_scale(image)
self.currentScaleFactor = self.currentScaleFactor * self.scaleFactors[scale_pi[0]]
if self.currentScaleFactor < self.min_scale_factor:
self.currentScaleFactor = self.min_scale_factor
# elif self.currentScaleFactor > self.max_scale_factor:
# self.currentScaleFactor = self.max_scale_factor
self.train_scale(image)
if self._roi[0] >= image.shape[1] - 1: self._roi[0] = image.shape[1] - 1
if self._roi[1] >= image.shape[0] - 1: self._roi[1] = image.shape[0] - 1
if self._roi[0] + self._roi[2] <= 0: self._roi[0] = -self._roi[2] + 2
if self._roi[1] + self._roi[3] <= 0: self._roi[1] = -self._roi[3] + 2
assert (self._roi[2] > 0 and self._roi[3] > 0)
# 使用当前的检测框来训练样本参数
x = self.getFeatures(image, 0, 1.0)
self.train(x, self.interp_factor)
return self._roi
#################
### 尺度估计器 ###
#################
def computeYsf(self):
scale_sigma2 = (self.n_scales / self.n_scales ** 0.5 * self.scale_sigma_factor) ** 2
_, res = np.ogrid[0:0, 0:self.n_scales]
ceilS = np.ceil(self.n_scales / 2.0)
res = np.exp(- 0.5 * (np.power(res + 1 - ceilS, 2)) / scale_sigma2)
return fftd(res)
def createHanningMatsForScale(self):
_, hann_s = np.ogrid[0:0, 0:self.n_scales]
hann_s = 0.5 * (1 - np.cos(2 * np.pi * hann_s / (self.n_scales - 1)))
return hann_s
# 初始化尺度估计器
def dsstInit(self, roi, image):
self.base_width = roi[2]
self.base_height = roi[3]
# Guassian peak for scales (after fft)
self.ysf = self.computeYsf()
self.s_hann = self.createHanningMatsForScale()
# Get all scale changing rate
scaleFactors = np.arange(self.n_scales)
ceilS = np.ceil(self.n_scales / 2.0)
self.scaleFactors = np.power(self.scale_step, ceilS - scaleFactors - 1)
# Get the scaling rate for compressing to the model size
scale_model_factor = 1.
if self.base_width * self.base_height > self.scale_max_area:
scale_model_factor = (self.scale_max_area / (self.base_width * self.base_height)) ** 0.5
self.scale_model_width = int(self.base_width * scale_model_factor)
self.scale_model_height = int(self.base_height * scale_model_factor)
# Compute min and max scaling rate
self.min_scale_factor = np.power(self.scale_step, np.ceil(np.log((max(5 / self.base_width, 5 / self.base_height) * (1 + self.scale_padding))) / 0.0086))
self.max_scale_factor = np.power(self.scale_step, np.floor(np.log((min(image.shape[0] / self.base_width, image.shape[1] / self.base_height) * (1 + self.scale_padding))) / 0.0086))
self.train_scale(image, True)
# 获取尺度样本
def get_scale_sample(self, image):
xsf = None
for i in range(self.n_scales):
# Size of subwindow waiting to be detect
patch_width = self.base_width * self.scaleFactors[i] * self.currentScaleFactor
patch_height = self.base_height * self.scaleFactors[i] * self.currentScaleFactor
cx = self._roi[0] + self._roi[2] / 2.
cy = self._roi[1] + self._roi[3] / 2.
# Get the subwindow
im_patch = extractImage(image, cx, cy, patch_width, patch_height)
if self.scale_model_width > im_patch.shape[1]:
im_patch_resized = cv2.resize(im_patch, (self.scale_model_width, self.scale_model_height), None, 0, 0, 1)
else:
im_patch_resized = cv2.resize(im_patch, (self.scale_model_width, self.scale_model_height), None, 0, 0, 3)
mapp = {'sizeX': 0, 'sizeY': 0, 'numFeatures': 0, 'map': 0}
mapp = fhog.getFeatureMaps(im_patch_resized, self.cell_size, mapp)
mapp = fhog.normalizeAndTruncate(mapp, 0.2)
mapp = fhog.PCAFeatureMaps(mapp)
if i == 0:
totalSize = mapp['numFeatures'] * mapp['sizeX'] * mapp['sizeY']
xsf = np.zeros((totalSize, self.n_scales))
# Multiply the FHOG results by hanning window and copy to the output
FeaturesMap = mapp['map'].reshape((totalSize, 1))
FeaturesMap = self.s_hann[0][i] * FeaturesMap
xsf[:, i] = FeaturesMap[:, 0]
return fftd(xsf, False, True)
# 训练尺度估计器
def train_scale(self, image, ini=False):
xsf = self.get_scale_sample(image)
# Adjust ysf to the same size as xsf in the first time
if ini:
totalSize = xsf.shape[0]
self.ysf = cv2.repeat(self.ysf, totalSize, 1)
# Get new GF in the paper (delta A)
new_sf_num = cv2.mulSpectrums(self.ysf, xsf, 0, conjB=True)
new_sf_den = cv2.mulSpectrums(xsf, xsf, 0, conjB=True)
new_sf_den = cv2.reduce(real(new_sf_den), 0, cv2.REDUCE_SUM)
if ini:
self.sf_den = new_sf_den
self.sf_num = new_sf_num
else:
# Get new A and new B
self.sf_den = cv2.addWeighted(self.sf_den, (1 - self.scale_lr), new_sf_den, self.scale_lr, 0)
self.sf_num = cv2.addWeighted(self.sf_num, (1 - self.scale_lr), new_sf_num, self.scale_lr, 0)
self.update_roi()
# 检测当前图像尺度
def detect_scale(self, image):
xsf = self.get_scale_sample(image)
# Compute AZ in the paper
add_temp = cv2.reduce(complexMultiplication(self.sf_num, xsf), 0, cv2.REDUCE_SUM)
# compute the final y
scale_response = cv2.idft(complexDivisionReal(add_temp, (self.sf_den + self.scale_lambda)), None, cv2.DFT_REAL_OUTPUT)
# Get the max point as the final scaling rate
# pv:响应最大值 pi:相应最大点的索引数组
_, pv, _, pi = cv2.minMaxLoc(scale_response)
return pi
# 更新尺度
def update_roi(self):
# 跟踪框、尺度框中心
cx = self._roi[0] + self._roi[2] / 2.
cy = self._roi[1] + self._roi[3] / 2.
# Recompute the ROI left-upper point and size
self._roi[2] = self.base_width * self.currentScaleFactor
self._roi[3] = self.base_height * self.currentScaleFactor
# 因为返回的只有中心坐标,使用尺度和中心坐标调整目标框
self._roi[0] = cx - self._roi[2] / 2.0
self._roi[1] = cy - self._roi[3] / 2.0