-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathbenchmark.py
50 lines (37 loc) · 1.58 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import tensorflow as tf
import time
import argparse
import os
import posenet
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=int, default=101)
parser.add_argument('--image_dir', type=str, default='./images')
parser.add_argument('--num_images', type=int, default=1000)
args = parser.parse_args()
def main():
with tf.Session() as sess:
model_cfg, model_outputs = posenet.load_model(args.model, sess)
output_stride = model_cfg['output_stride']
num_images = args.num_images
filenames = [
f.path for f in os.scandir(args.image_dir) if f.is_file() and f.path.endswith(('.png', '.jpg'))]
if len(filenames) > num_images:
filenames = filenames[:num_images]
images = {f: posenet.read_imgfile(f, 1.0, output_stride)[0] for f in filenames}
start = time.time()
for i in range(num_images):
heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run(
model_outputs,
feed_dict={'image:0': images[filenames[i % len(filenames)]]}
)
output = posenet.decode_multiple_poses(
heatmaps_result.squeeze(axis=0),
offsets_result.squeeze(axis=0),
displacement_fwd_result.squeeze(axis=0),
displacement_bwd_result.squeeze(axis=0),
output_stride=output_stride,
max_pose_detections=10,
min_pose_score=0.25)
print('Average FPS:', num_images / (time.time() - start))
if __name__ == "__main__":
main()