-
Notifications
You must be signed in to change notification settings - Fork 3.7k
/
Copy pathproteins_diff_pool.py
161 lines (123 loc) · 4.73 KB
/
proteins_diff_pool.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os.path as osp
import time
from math import ceil
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.datasets import TUDataset
from torch_geometric.loader import DenseDataLoader
from torch_geometric.nn import DenseSAGEConv, dense_diff_pool
max_nodes = 150
path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data',
'PROTEINS_dense')
dataset = TUDataset(
path,
name='PROTEINS',
transform=T.ToDense(max_nodes),
pre_filter=lambda data: data.num_nodes <= max_nodes,
)
dataset = dataset.shuffle()
n = (len(dataset) + 9) // 10
test_dataset = dataset[:n]
val_dataset = dataset[n:2 * n]
train_dataset = dataset[2 * n:]
test_loader = DenseDataLoader(test_dataset, batch_size=20)
val_loader = DenseDataLoader(val_dataset, batch_size=20)
train_loader = DenseDataLoader(train_dataset, batch_size=20)
class GNN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels,
normalize=False, lin=True):
super().__init__()
self.conv1 = DenseSAGEConv(in_channels, hidden_channels, normalize)
self.bn1 = torch.nn.BatchNorm1d(hidden_channels)
self.conv2 = DenseSAGEConv(hidden_channels, hidden_channels, normalize)
self.bn2 = torch.nn.BatchNorm1d(hidden_channels)
self.conv3 = DenseSAGEConv(hidden_channels, out_channels, normalize)
self.bn3 = torch.nn.BatchNorm1d(out_channels)
if lin is True:
self.lin = torch.nn.Linear(2 * hidden_channels + out_channels,
out_channels)
else:
self.lin = None
def bn(self, i, x):
batch_size, num_nodes, num_channels = x.size()
x = x.view(-1, num_channels)
x = getattr(self, f'bn{i}')(x)
x = x.view(batch_size, num_nodes, num_channels)
return x
def forward(self, x, adj, mask=None):
batch_size, num_nodes, in_channels = x.size()
x0 = x
x1 = self.bn(1, self.conv1(x0, adj, mask).relu())
x2 = self.bn(2, self.conv2(x1, adj, mask).relu())
x3 = self.bn(3, self.conv3(x2, adj, mask).relu())
x = torch.cat([x1, x2, x3], dim=-1)
if self.lin is not None:
x = self.lin(x).relu()
return x
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
num_nodes = ceil(0.25 * max_nodes)
self.gnn1_pool = GNN(dataset.num_features, 64, num_nodes)
self.gnn1_embed = GNN(dataset.num_features, 64, 64, lin=False)
num_nodes = ceil(0.25 * num_nodes)
self.gnn2_pool = GNN(3 * 64, 64, num_nodes)
self.gnn2_embed = GNN(3 * 64, 64, 64, lin=False)
self.gnn3_embed = GNN(3 * 64, 64, 64, lin=False)
self.lin1 = torch.nn.Linear(3 * 64, 64)
self.lin2 = torch.nn.Linear(64, dataset.num_classes)
def forward(self, x, adj, mask=None):
s = self.gnn1_pool(x, adj, mask)
x = self.gnn1_embed(x, adj, mask)
x, adj, l1, e1 = dense_diff_pool(x, adj, s, mask)
s = self.gnn2_pool(x, adj)
x = self.gnn2_embed(x, adj)
x, adj, l2, e2 = dense_diff_pool(x, adj, s)
x = self.gnn3_embed(x, adj)
x = x.mean(dim=1)
x = self.lin1(x).relu()
x = self.lin2(x)
return F.log_softmax(x, dim=-1), l1 + l2, e1 + e2
if torch.cuda.is_available():
device = torch.device('cuda')
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
device = torch.device('mps')
else:
device = torch.device('cpu')
model = Net().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
def train(epoch):
model.train()
loss_all = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
output, _, _ = model(data.x, data.adj, data.mask)
loss = F.nll_loss(output, data.y.view(-1))
loss.backward()
loss_all += data.y.size(0) * float(loss)
optimizer.step()
return loss_all / len(train_dataset)
@torch.no_grad()
def test(loader):
model.eval()
correct = 0
for data in loader:
data = data.to(device)
pred = model(data.x, data.adj, data.mask)[0].max(dim=1)[1]
correct += int(pred.eq(data.y.view(-1)).sum())
return correct / len(loader.dataset)
best_val_acc = test_acc = 0
times = []
for epoch in range(1, 151):
start = time.time()
train_loss = train(epoch)
val_acc = test(val_loader)
if val_acc > best_val_acc:
test_acc = test(test_loader)
best_val_acc = val_acc
print(f'Epoch: {epoch:03d}, Train Loss: {train_loss:.4f}, '
f'Val Acc: {val_acc:.4f}, Test Acc: {test_acc:.4f}')
times.append(time.time() - start)
print(f"Median time per epoch: {torch.tensor(times).median():.4f}s")