Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update LLVM and add the safestack attribute to all generated functions. #26612

Closed
emberian opened this issue Jun 27, 2015 · 7 comments
Closed
Labels
A-codegen Area: Code generation A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. A-security Area: Security (example: address space layout randomization). C-enhancement Category: An issue proposing an enhancement or a PR with one. E-easy Call for participation: Easy difficulty. Experience needed to fix: Not much. Good first issue. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.

Comments

@emberian
Copy link
Member

LLVM recently landed: http://reviews.llvm.org/D6094. Clang's documentation on it. We should enable it on static libraries/executables, as the performance costs seem to be non-existent-to-negligible, and it extends defense-in-depth rather well.

cc #15179, as this effectively replaces stack canaries.

@emberian emberian added E-easy Call for participation: Easy difficulty. Experience needed to fix: Not much. Good first issue. A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. C-enhancement Category: An issue proposing an enhancement or a PR with one. A-codegen Area: Code generation A-security Area: Security (example: address space layout randomization). T-compiler Relevant to the compiler team, which will review and decide on the PR/issue. labels Jun 27, 2015
@emberian
Copy link
Member Author

We'll need to upgrade our compiler-rt as well. We will probably need to add an attribute to allow functions or maybe even crates to opt-out of this treatment, as things such as signal handlers and the lowest levels of a kernel or other bare-metal system will not want this (interrupt handlers and bootstrap, mainly).

@emberian
Copy link
Member Author

It would also be interesting to look at what patterns we have that force use of the unsafe stack (if any) and how to avoid that.

@Aatch
Copy link
Contributor

Aatch commented Jun 27, 2015

@cmr looking at the CPI paper, any stack-allocated value that has its address taken. That's actually fairly common in Rust code, and avoiding it isn't really feasible. I'd be interested in seeing what performance effects it has on Rust code, as the patterns in Rust code are quite different to those in C/C++.

@bstrie
Copy link
Contributor

bstrie commented Jun 27, 2015

The SafeStack commit message says that the safe stack can contain "local variables that are statically verified to be accessed in a safe way". Are our notions of safety stronger than what LLVM considers to be "safe" here, meaning that basically all variables would be living in the safe stack?

@lambda
Copy link
Contributor

lambda commented Jun 27, 2015

Posted this in the Reddit thread, but this might be a better place to leave it.

It looks like the way this determines 'safe' vs 'unsafe' is by looking at how a function uses a pointer returned by alloca.

The code that check this looks like it basically whitelists a few safe operations, such as dereferencing the pointer directly, using a constant index into a constant sized array, and passing it in to arguments of functions annotated with nocapture (which seems like a somewhat dubious choice, as it seems like there's plenty unsafe that a function could do without capturing a pointer).

It doesn't look like there's any way to whitelist any potential uses, other than using nocapture for arguments to functions. Searching through the Rust source, it doesn't look like nocatpure is currently applied except in one specialized case; in some of the tests, there is a TODO indicating that it should probably be applied in more cases.

So, I'm guessing that the best thing that Rust could do to give it more information would be applying nocapture to appropriate arguments. However, when doing that, it seems like the guarantess are fairly best-effort, as there's no interprocedural analysis done, so a nocapture argument that eventually gets passed into unsafe code could probably wind up being exploited.

Note that this was just a very cursory look that I took at the code, I could be wrong about how it works.

@emberian
Copy link
Member Author

@lambda Yeah, it looks pretty conservative right now. I suspect many locals would end up on the unsafe stack. Alas.

@alexcrichton
Copy link
Member

We updated LLVM so there's support for this in our LLVM, and I think that turning this on by default probably wants some investigation and likely an RFC first, so I'm going to close this for now.

workingjubilee pushed a commit to workingjubilee/rustc that referenced this issue Sep 12, 2021
LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This patch adds a
rustc option `-Z stack-protector={none,basic,strong,all}` which controls the use
of these attributes. This gives rustc the same stack smash protection support as
clang offers through options `-fno-stack-protector`, `-fstack-protector`,
`-fstack-protector-strong`, and `-fstack-protector-all`. The protection this can
offer is demonstrated in test/ui/abi/stack-protector.rs. This fills a gap in the
current list of rustc exploit
mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in rust-lang#15179.

Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.

Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This patch follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.

Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.

LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see rust-lang#26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (rust-lang#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.

The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.

Reviewed-by: Nikita Popov <[email protected]>

Extra commits during review:

- [address-review] make the stack-protector option unstable

- [address-review] reduce detail level of stack-protector option help text

- [address-review] correct grammar in comment

- [address-review] use compiler flag to avoid merging functions in test

- [address-review] specify min LLVM version in fortanix stack-protector test

  Only for Fortanix test, since this target specifically requests the
  `--x86-experimental-lvi-inline-asm-hardening` flag.

- [address-review] specify required LLVM components in stack-protector tests

- move stack protector option enum closer to other similar option enums

- rustc_interface/tests: sort debug option list in tracking hash test

- add an explicit `none` stack-protector option

Revert "set LLVM requirements for all stack protector support test revisions"

This reverts commit a49b74f92a4e7d701d6f6cf63d207a8aff2e0f68.
workingjubilee added a commit to workingjubilee/rustc that referenced this issue Sep 12, 2021
add codegen option for using LLVM stack smash protection

LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This PR adds a codegen
option `-C stack-protector={basic,strong,all}` which controls the use of these
attributes. This gives rustc the same stack smash protection support as clang
offers through options `-fstack-protector`, `-fstack-protector-strong`, and
`-fstack-protector-all`. The protection this can offer is demonstrated in
test/ui/abi/stack-protector.rs. This fills a gap in the current list of rustc
exploit mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in rust-lang#15179.

Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.

Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This PR follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.

Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.

LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see rust-lang#26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (rust-lang#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.

The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.
Manishearth added a commit to Manishearth/rust that referenced this issue Sep 12, 2021
add codegen option for using LLVM stack smash protection

LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This PR adds a codegen
option `-C stack-protector={basic,strong,all}` which controls the use of these
attributes. This gives rustc the same stack smash protection support as clang
offers through options `-fstack-protector`, `-fstack-protector-strong`, and
`-fstack-protector-all`. The protection this can offer is demonstrated in
test/ui/abi/stack-protector.rs. This fills a gap in the current list of rustc
exploit mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in rust-lang#15179.

Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.

Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This PR follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.

Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.

LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see rust-lang#26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (rust-lang#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.

The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.
bbjornse added a commit to bbjornse/rust that referenced this issue Nov 22, 2021
LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This patch adds a
rustc option `-Z stack-protector={none,basic,strong,all}` which controls the use
of these attributes. This gives rustc the same stack smash protection support as
clang offers through options `-fno-stack-protector`, `-fstack-protector`,
`-fstack-protector-strong`, and `-fstack-protector-all`. The protection this can
offer is demonstrated in test/ui/abi/stack-protector.rs. This fills a gap in the
current list of rustc exploit
mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in rust-lang#15179.

Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.

Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This patch follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.

Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.

LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see rust-lang#26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (rust-lang#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.

The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.

Reviewed-by: Nikita Popov <[email protected]>

Extra commits during review:

- [address-review] make the stack-protector option unstable

- [address-review] reduce detail level of stack-protector option help text

- [address-review] correct grammar in comment

- [address-review] use compiler flag to avoid merging functions in test

- [address-review] specify min LLVM version in fortanix stack-protector test

  Only for Fortanix test, since this target specifically requests the
  `--x86-experimental-lvi-inline-asm-hardening` flag.

- [address-review] specify required LLVM components in stack-protector tests

- move stack protector option enum closer to other similar option enums

- rustc_interface/tests: sort debug option list in tracking hash test

- add an explicit `none` stack-protector option

Revert "set LLVM requirements for all stack protector support test revisions"

This reverts commit a49b74f92a4e7d701d6f6cf63d207a8aff2e0f68.
bors added a commit to rust-lang-ci/rust that referenced this issue Nov 23, 2021
add codegen option for using LLVM stack smash protection

LLVM has built-in heuristics for adding stack canaries to functions. These
heuristics can be selected with LLVM function attributes. This PR adds a codegen
option `-C stack-protector={basic,strong,all}` which controls the use of these
attributes. This gives rustc the same stack smash protection support as clang
offers through options `-fstack-protector`, `-fstack-protector-strong`, and
`-fstack-protector-all`. The protection this can offer is demonstrated in
test/ui/abi/stack-protector.rs. This fills a gap in the current list of rustc
exploit mitigations (https://doc.rust-lang.org/rustc/exploit-mitigations.html),
originally discussed in rust-lang#15179.

Stack smash protection adds runtime overhead and is therefore still off by
default, but now users have the option to trade performance for security as they
see fit. An example use case is adding Rust code in an existing C/C++ code base
compiled with stack smash protection. Without the ability to add stack smash
protection to the Rust code, the code base artifacts could be exploitable in
ways not possible if the code base remained pure C/C++.

Stack smash protection support is present in LLVM for almost all the current
tier 1/tier 2 targets: see
test/assembly/stack-protector/stack-protector-target-support.rs. The one
exception is nvptx64-nvidia-cuda. This PR follows clang's example, and adds a
warning message printed if stack smash protection is used with this target (see
test/ui/stack-protector/warn-stack-protector-unsupported.rs). Support for tier 3
targets has not been checked.

Since the heuristics are applied at the LLVM level, the heuristics are expected
to add stack smash protection to a fraction of functions comparable to C/C++.
Some experiments demonstrating how Rust code is affected by the different
heuristics can be found in
test/assembly/stack-protector/stack-protector-heuristics-effect.rs. There is
potential for better heuristics using Rust-specific safety information. For
example it might be reasonable to skip stack smash protection in functions which
transitively only use safe Rust code, or which uses only a subset of functions
the user declares safe (such as anything under `std.*`). Such alternative
heuristics could be added at a later point.

LLVM also offers a "safestack" sanitizer as an alternative way to guard against
stack smashing (see rust-lang#26612). This could possibly also be included as a
stack-protection heuristic. An alternative is to add it as a sanitizer (rust-lang#39699).
This is what clang does: safestack is exposed with option
`-fsanitize=safe-stack`.

The options are only supported by the LLVM backend, but as with other codegen
options it is visible in the main codegen option help menu. The heuristic names
"basic", "strong", and "all" are hopefully sufficiently generic to be usable in
other backends as well.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-codegen Area: Code generation A-LLVM Area: Code generation parts specific to LLVM. Both correctness bugs and optimization-related issues. A-security Area: Security (example: address space layout randomization). C-enhancement Category: An issue proposing an enhancement or a PR with one. E-easy Call for participation: Easy difficulty. Experience needed to fix: Not much. Good first issue. T-compiler Relevant to the compiler team, which will review and decide on the PR/issue.
Projects
None yet
Development

No branches or pull requests

5 participants