-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
cell.rs
2396 lines (2255 loc) · 82.9 KB
/
cell.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Shareable mutable containers.
//!
//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
//! have one of the following:
//!
//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
//!
//! This is enforced by the Rust compiler. However, there are situations where this rule is not
//! flexible enough. Sometimes it is required to have multiple references to an object and yet
//! mutate it.
//!
//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
//! types are the correct data structures to do so).
//!
//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
//! (mutable only via `&mut T`).
//!
//! Cell types come in three flavors: `Cell<T>`, `RefCell<T>`, and `OnceCell<T>`. Each provides
//! a different way of providing safe interior mutability.
//!
//! ## `Cell<T>`
//!
//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
//! obtained without replacing it with something else. Both of these rules ensure that there is
//! never more than one reference pointing to the inner value. This type provides the following
//! methods:
//!
//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
//! interior value by duplicating it.
//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
//! interior value with [`Default::default()`] and returns the replaced value.
//! - All types have:
//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
//! value.
//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
//! interior value.
//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
//!
//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
//! possible. For larger and non-copy types, `RefCell` provides some advantages.
//!
//! ## `RefCell<T>`
//!
//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
//! statically, at compile time.
//!
//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
//! these rules, the thread will panic.
//!
//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
//!
//! ## `OnceCell<T>`
//!
//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
//! typically only need to be set once. This means that a reference `&T` can be obtained without
//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
//! reference to the `OnceCell`.
//!
//! `OnceCell` provides the following methods:
//!
//! - [`get`](OnceCell::get): obtain a reference to the inner value
//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
//! if you have a mutable reference to the cell itself.
//!
//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
//!
//! ## `LazyCell<T, F>`
//!
//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
//! so its use is much more transparent with a place which has been initialized by a constant.
//!
//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
//!
//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
//!
//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
//!
//! # When to choose interior mutability
//!
//! The more common inherited mutability, where one must have unique access to mutate a value, is
//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
//! interior mutability is something of a last resort. Since cell types enable mutation where it
//! would otherwise be disallowed though, there are occasions when interior mutability might be
//! appropriate, or even *must* be used, e.g.
//!
//! * Introducing mutability 'inside' of something immutable
//! * Implementation details of logically-immutable methods.
//! * Mutating implementations of [`Clone`].
//!
//! ## Introducing mutability 'inside' of something immutable
//!
//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
//! be cloned and shared between multiple parties. Because the contained values may be
//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
//! impossible to mutate data inside of these smart pointers at all.
//!
//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
//! mutability:
//!
//! ```
//! use std::cell::{RefCell, RefMut};
//! use std::collections::HashMap;
//! use std::rc::Rc;
//!
//! fn main() {
//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
//! // Create a new block to limit the scope of the dynamic borrow
//! {
//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
//! map.insert("africa", 92388);
//! map.insert("kyoto", 11837);
//! map.insert("piccadilly", 11826);
//! map.insert("marbles", 38);
//! }
//!
//! // Note that if we had not let the previous borrow of the cache fall out
//! // of scope then the subsequent borrow would cause a dynamic thread panic.
//! // This is the major hazard of using `RefCell`.
//! let total: i32 = shared_map.borrow().values().sum();
//! println!("{total}");
//! }
//! ```
//!
//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
//! multi-threaded situation.
//!
//! ## Implementation details of logically-immutable methods
//!
//! Occasionally it may be desirable not to expose in an API that there is mutation happening
//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
//! forces the implementation to perform mutation; or because you must employ mutation to implement
//! a trait method that was originally defined to take `&self`.
//!
//! ```
//! # #![allow(dead_code)]
//! use std::cell::OnceCell;
//!
//! struct Graph {
//! edges: Vec<(i32, i32)>,
//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
//! }
//!
//! impl Graph {
//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
//! self.span_tree_cache
//! .get_or_init(|| self.calc_span_tree())
//! .clone()
//! }
//!
//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
//! // Expensive computation goes here
//! vec![]
//! }
//! }
//! ```
//!
//! ## Mutating implementations of `Clone`
//!
//! This is simply a special - but common - case of the previous: hiding mutability for operations
//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
//! reference counts within a `Cell<T>`.
//!
//! ```
//! use std::cell::Cell;
//! use std::ptr::NonNull;
//! use std::process::abort;
//! use std::marker::PhantomData;
//!
//! struct Rc<T: ?Sized> {
//! ptr: NonNull<RcInner<T>>,
//! phantom: PhantomData<RcInner<T>>,
//! }
//!
//! struct RcInner<T: ?Sized> {
//! strong: Cell<usize>,
//! refcount: Cell<usize>,
//! value: T,
//! }
//!
//! impl<T: ?Sized> Clone for Rc<T> {
//! fn clone(&self) -> Rc<T> {
//! self.inc_strong();
//! Rc {
//! ptr: self.ptr,
//! phantom: PhantomData,
//! }
//! }
//! }
//!
//! trait RcInnerPtr<T: ?Sized> {
//!
//! fn inner(&self) -> &RcInner<T>;
//!
//! fn strong(&self) -> usize {
//! self.inner().strong.get()
//! }
//!
//! fn inc_strong(&self) {
//! self.inner()
//! .strong
//! .set(self.strong()
//! .checked_add(1)
//! .unwrap_or_else(|| abort() ));
//! }
//! }
//!
//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
//! fn inner(&self) -> &RcInner<T> {
//! unsafe {
//! self.ptr.as_ref()
//! }
//! }
//! }
//! ```
//!
//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
//! [`Sync`]: ../../std/marker/trait.Sync.html
//! [`atomic`]: crate::sync::atomic
#![stable(feature = "rust1", since = "1.0.0")]
use crate::cmp::Ordering;
use crate::fmt::{self, Debug, Display};
use crate::marker::{PhantomData, Unsize};
use crate::mem;
use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
use crate::pin::PinCoerceUnsized;
use crate::ptr::{self, NonNull};
mod lazy;
mod once;
#[stable(feature = "lazy_cell", since = "1.80.0")]
pub use lazy::LazyCell;
#[stable(feature = "once_cell", since = "1.70.0")]
pub use once::OnceCell;
/// A mutable memory location.
///
/// # Memory layout
///
/// `Cell<T>` has the same [memory layout and caveats as
/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
/// `Cell<T>` has the same in-memory representation as its inner type `T`.
///
/// # Examples
///
/// In this example, you can see that `Cell<T>` enables mutation inside an
/// immutable struct. In other words, it enables "interior mutability".
///
/// ```
/// use std::cell::Cell;
///
/// struct SomeStruct {
/// regular_field: u8,
/// special_field: Cell<u8>,
/// }
///
/// let my_struct = SomeStruct {
/// regular_field: 0,
/// special_field: Cell::new(1),
/// };
///
/// let new_value = 100;
///
/// // ERROR: `my_struct` is immutable
/// // my_struct.regular_field = new_value;
///
/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
/// // which can always be mutated
/// my_struct.special_field.set(new_value);
/// assert_eq!(my_struct.special_field.get(), new_value);
/// ```
///
/// See the [module-level documentation](self) for more.
#[cfg_attr(not(test), rustc_diagnostic_item = "Cell")]
#[stable(feature = "rust1", since = "1.0.0")]
#[repr(transparent)]
#[rustc_pub_transparent]
pub struct Cell<T: ?Sized> {
value: UnsafeCell<T>,
}
#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
// Note that this negative impl isn't strictly necessary for correctness,
// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
// However, given how important `Cell`'s `!Sync`-ness is,
// having an explicit negative impl is nice for documentation purposes
// and results in nicer error messages.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized> !Sync for Cell<T> {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Copy> Clone for Cell<T> {
#[inline]
fn clone(&self) -> Cell<T> {
Cell::new(self.get())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Cell<T> {
/// Creates a `Cell<T>`, with the `Default` value for T.
#[inline]
fn default() -> Cell<T> {
Cell::new(Default::default())
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialEq + Copy> PartialEq for Cell<T> {
#[inline]
fn eq(&self, other: &Cell<T>) -> bool {
self.get() == other.get()
}
}
#[stable(feature = "cell_eq", since = "1.2.0")]
impl<T: Eq + Copy> Eq for Cell<T> {}
#[stable(feature = "cell_ord", since = "1.10.0")]
impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
#[inline]
fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
self.get().partial_cmp(&other.get())
}
#[inline]
fn lt(&self, other: &Cell<T>) -> bool {
self.get() < other.get()
}
#[inline]
fn le(&self, other: &Cell<T>) -> bool {
self.get() <= other.get()
}
#[inline]
fn gt(&self, other: &Cell<T>) -> bool {
self.get() > other.get()
}
#[inline]
fn ge(&self, other: &Cell<T>) -> bool {
self.get() >= other.get()
}
}
#[stable(feature = "cell_ord", since = "1.10.0")]
impl<T: Ord + Copy> Ord for Cell<T> {
#[inline]
fn cmp(&self, other: &Cell<T>) -> Ordering {
self.get().cmp(&other.get())
}
}
#[stable(feature = "cell_from", since = "1.12.0")]
impl<T> From<T> for Cell<T> {
/// Creates a new `Cell<T>` containing the given value.
fn from(t: T) -> Cell<T> {
Cell::new(t)
}
}
impl<T> Cell<T> {
/// Creates a new `Cell` containing the given value.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
#[inline]
pub const fn new(value: T) -> Cell<T> {
Cell { value: UnsafeCell::new(value) }
}
/// Sets the contained value.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
///
/// c.set(10);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn set(&self, val: T) {
self.replace(val);
}
/// Swaps the values of two `Cell`s.
///
/// The difference with `std::mem::swap` is that this function doesn't
/// require a `&mut` reference.
///
/// # Panics
///
/// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
/// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
/// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c1 = Cell::new(5i32);
/// let c2 = Cell::new(10i32);
/// c1.swap(&c2);
/// assert_eq!(10, c1.get());
/// assert_eq!(5, c2.get());
/// ```
#[inline]
#[stable(feature = "move_cell", since = "1.17.0")]
pub fn swap(&self, other: &Self) {
// This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
// do the check in const, so trying to use it here would be inviting unnecessary fragility.
fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
let src_usize = src.addr();
let dst_usize = dst.addr();
let diff = src_usize.abs_diff(dst_usize);
diff >= size_of::<T>()
}
if ptr::eq(self, other) {
// Swapping wouldn't change anything.
return;
}
if !is_nonoverlapping(self, other) {
// See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
panic!("`Cell::swap` on overlapping non-identical `Cell`s");
}
// SAFETY: This can be risky if called from separate threads, but `Cell`
// is `!Sync` so this won't happen. This also won't invalidate any
// pointers since `Cell` makes sure nothing else will be pointing into
// either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
// so `swap` will just properly copy two full values of type `T` back and forth.
unsafe {
mem::swap(&mut *self.value.get(), &mut *other.value.get());
}
}
/// Replaces the contained value with `val`, and returns the old contained value.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let cell = Cell::new(5);
/// assert_eq!(cell.get(), 5);
/// assert_eq!(cell.replace(10), 5);
/// assert_eq!(cell.get(), 10);
/// ```
#[inline]
#[stable(feature = "move_cell", since = "1.17.0")]
#[rustc_const_unstable(feature = "const_cell", issue = "131283")]
#[rustc_confusables("swap")]
pub const fn replace(&self, val: T) -> T {
// SAFETY: This can cause data races if called from a separate thread,
// but `Cell` is `!Sync` so this won't happen.
mem::replace(unsafe { &mut *self.value.get() }, val)
}
/// Unwraps the value, consuming the cell.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
/// let five = c.into_inner();
///
/// assert_eq!(five, 5);
/// ```
#[stable(feature = "move_cell", since = "1.17.0")]
#[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
pub const fn into_inner(self) -> T {
self.value.into_inner()
}
}
impl<T: Copy> Cell<T> {
/// Returns a copy of the contained value.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
///
/// let five = c.get();
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_unstable(feature = "const_cell", issue = "131283")]
pub const fn get(&self) -> T {
// SAFETY: This can cause data races if called from a separate thread,
// but `Cell` is `!Sync` so this won't happen.
unsafe { *self.value.get() }
}
/// Updates the contained value using a function and returns the new value.
///
/// # Examples
///
/// ```
/// #![feature(cell_update)]
///
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
/// let new = c.update(|x| x + 1);
///
/// assert_eq!(new, 6);
/// assert_eq!(c.get(), 6);
/// ```
#[inline]
#[unstable(feature = "cell_update", issue = "50186")]
pub fn update<F>(&self, f: F) -> T
where
F: FnOnce(T) -> T,
{
let old = self.get();
let new = f(old);
self.set(new);
new
}
}
impl<T: ?Sized> Cell<T> {
/// Returns a raw pointer to the underlying data in this cell.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
///
/// let ptr = c.as_ptr();
/// ```
#[inline]
#[stable(feature = "cell_as_ptr", since = "1.12.0")]
#[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
#[rustc_as_ptr]
#[rustc_never_returns_null_ptr]
pub const fn as_ptr(&self) -> *mut T {
self.value.get()
}
/// Returns a mutable reference to the underlying data.
///
/// This call borrows `Cell` mutably (at compile-time) which guarantees
/// that we possess the only reference.
///
/// However be cautious: this method expects `self` to be mutable, which is
/// generally not the case when using a `Cell`. If you require interior
/// mutability by reference, consider using `RefCell` which provides
/// run-time checked mutable borrows through its [`borrow_mut`] method.
///
/// [`borrow_mut`]: RefCell::borrow_mut()
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let mut c = Cell::new(5);
/// *c.get_mut() += 1;
///
/// assert_eq!(c.get(), 6);
/// ```
#[inline]
#[stable(feature = "cell_get_mut", since = "1.11.0")]
#[rustc_const_unstable(feature = "const_cell", issue = "131283")]
pub const fn get_mut(&mut self) -> &mut T {
self.value.get_mut()
}
/// Returns a `&Cell<T>` from a `&mut T`
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let slice: &mut [i32] = &mut [1, 2, 3];
/// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
/// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
///
/// assert_eq!(slice_cell.len(), 3);
/// ```
#[inline]
#[stable(feature = "as_cell", since = "1.37.0")]
#[rustc_const_unstable(feature = "const_cell", issue = "131283")]
pub const fn from_mut(t: &mut T) -> &Cell<T> {
// SAFETY: `&mut` ensures unique access.
unsafe { &*(t as *mut T as *const Cell<T>) }
}
}
impl<T: Default> Cell<T> {
/// Takes the value of the cell, leaving `Default::default()` in its place.
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let c = Cell::new(5);
/// let five = c.take();
///
/// assert_eq!(five, 5);
/// assert_eq!(c.into_inner(), 0);
/// ```
#[stable(feature = "move_cell", since = "1.17.0")]
pub fn take(&self) -> T {
self.replace(Default::default())
}
}
#[unstable(feature = "coerce_unsized", issue = "18598")]
impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
// and become dyn-compatible method receivers.
// Note that currently `Cell` itself cannot be a method receiver
// because it does not implement Deref.
// In other words:
// `self: Cell<&Self>` won't work
// `self: CellWrapper<Self>` becomes possible
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
impl<T> Cell<[T]> {
/// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
///
/// # Examples
///
/// ```
/// use std::cell::Cell;
///
/// let slice: &mut [i32] = &mut [1, 2, 3];
/// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
/// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
///
/// assert_eq!(slice_cell.len(), 3);
/// ```
#[stable(feature = "as_cell", since = "1.37.0")]
#[rustc_const_unstable(feature = "const_cell", issue = "131283")]
pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
// SAFETY: `Cell<T>` has the same memory layout as `T`.
unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
}
}
impl<T, const N: usize> Cell<[T; N]> {
/// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
///
/// # Examples
///
/// ```
/// #![feature(as_array_of_cells)]
/// use std::cell::Cell;
///
/// let mut array: [i32; 3] = [1, 2, 3];
/// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
/// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
/// ```
#[unstable(feature = "as_array_of_cells", issue = "88248")]
pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
// SAFETY: `Cell<T>` has the same memory layout as `T`.
unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
}
}
/// A mutable memory location with dynamically checked borrow rules
///
/// See the [module-level documentation](self) for more.
#[cfg_attr(not(test), rustc_diagnostic_item = "RefCell")]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
// Stores the location of the earliest currently active borrow.
// This gets updated whenever we go from having zero borrows
// to having a single borrow. When a borrow occurs, this gets included
// in the generated `BorrowError`/`BorrowMutError`
#[cfg(feature = "debug_refcell")]
borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
value: UnsafeCell<T>,
}
/// An error returned by [`RefCell::try_borrow`].
#[stable(feature = "try_borrow", since = "1.13.0")]
#[non_exhaustive]
pub struct BorrowError {
#[cfg(feature = "debug_refcell")]
location: &'static crate::panic::Location<'static>,
}
#[stable(feature = "try_borrow", since = "1.13.0")]
impl Debug for BorrowError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut builder = f.debug_struct("BorrowError");
#[cfg(feature = "debug_refcell")]
builder.field("location", self.location);
builder.finish()
}
}
#[stable(feature = "try_borrow", since = "1.13.0")]
impl Display for BorrowError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt("already mutably borrowed", f)
}
}
/// An error returned by [`RefCell::try_borrow_mut`].
#[stable(feature = "try_borrow", since = "1.13.0")]
#[non_exhaustive]
pub struct BorrowMutError {
#[cfg(feature = "debug_refcell")]
location: &'static crate::panic::Location<'static>,
}
#[stable(feature = "try_borrow", since = "1.13.0")]
impl Debug for BorrowMutError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut builder = f.debug_struct("BorrowMutError");
#[cfg(feature = "debug_refcell")]
builder.field("location", self.location);
builder.finish()
}
}
#[stable(feature = "try_borrow", since = "1.13.0")]
impl Display for BorrowMutError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt("already borrowed", f)
}
}
// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[track_caller]
#[cold]
fn panic_already_borrowed(err: BorrowMutError) -> ! {
panic!("already borrowed: {:?}", err)
}
// This ensures the panicking code is outlined from `borrow` for `RefCell`.
#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
#[track_caller]
#[cold]
fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
panic!("already mutably borrowed: {:?}", err)
}
// Positive values represent the number of `Ref` active. Negative values
// represent the number of `RefMut` active. Multiple `RefMut`s can only be
// active at a time if they refer to distinct, nonoverlapping components of a
// `RefCell` (e.g., different ranges of a slice).
//
// `Ref` and `RefMut` are both two words in size, and so there will likely never
// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
// range. Thus, a `BorrowFlag` will probably never overflow or underflow.
// However, this is not a guarantee, as a pathological program could repeatedly
// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
// explicitly check for overflow and underflow in order to avoid unsafety, or at
// least behave correctly in the event that overflow or underflow happens (e.g.,
// see BorrowRef::new).
type BorrowFlag = isize;
const UNUSED: BorrowFlag = 0;
#[inline(always)]
fn is_writing(x: BorrowFlag) -> bool {
x < UNUSED
}
#[inline(always)]
fn is_reading(x: BorrowFlag) -> bool {
x > UNUSED
}
impl<T> RefCell<T> {
/// Creates a new `RefCell` containing `value`.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
///
/// let c = RefCell::new(5);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
#[inline]
pub const fn new(value: T) -> RefCell<T> {
RefCell {
value: UnsafeCell::new(value),
borrow: Cell::new(UNUSED),
#[cfg(feature = "debug_refcell")]
borrowed_at: Cell::new(None),
}
}
/// Consumes the `RefCell`, returning the wrapped value.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
///
/// let c = RefCell::new(5);
///
/// let five = c.into_inner();
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
#[rustc_allow_const_fn_unstable(const_precise_live_drops)]
#[inline]
pub const fn into_inner(self) -> T {
// Since this function takes `self` (the `RefCell`) by value, the
// compiler statically verifies that it is not currently borrowed.
self.value.into_inner()
}
/// Replaces the wrapped value with a new one, returning the old value,
/// without deinitializing either one.
///
/// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
///
/// # Panics
///
/// Panics if the value is currently borrowed.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
/// let cell = RefCell::new(5);
/// let old_value = cell.replace(6);
/// assert_eq!(old_value, 5);
/// assert_eq!(cell, RefCell::new(6));
/// ```
#[inline]
#[stable(feature = "refcell_replace", since = "1.24.0")]
#[track_caller]
#[rustc_confusables("swap")]
pub fn replace(&self, t: T) -> T {
mem::replace(&mut *self.borrow_mut(), t)
}
/// Replaces the wrapped value with a new one computed from `f`, returning
/// the old value, without deinitializing either one.
///
/// # Panics
///
/// Panics if the value is currently borrowed.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
/// let cell = RefCell::new(5);
/// let old_value = cell.replace_with(|&mut old| old + 1);
/// assert_eq!(old_value, 5);
/// assert_eq!(cell, RefCell::new(6));
/// ```
#[inline]
#[stable(feature = "refcell_replace_swap", since = "1.35.0")]
#[track_caller]
pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
let mut_borrow = &mut *self.borrow_mut();
let replacement = f(mut_borrow);
mem::replace(mut_borrow, replacement)
}
/// Swaps the wrapped value of `self` with the wrapped value of `other`,
/// without deinitializing either one.
///
/// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
///
/// # Panics
///
/// Panics if the value in either `RefCell` is currently borrowed, or
/// if `self` and `other` point to the same `RefCell`.
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
/// let c = RefCell::new(5);
/// let d = RefCell::new(6);
/// c.swap(&d);
/// assert_eq!(c, RefCell::new(6));
/// assert_eq!(d, RefCell::new(5));
/// ```
#[inline]
#[stable(feature = "refcell_swap", since = "1.24.0")]
pub fn swap(&self, other: &Self) {
mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
}
}
impl<T: ?Sized> RefCell<T> {
/// Immutably borrows the wrapped value.
///
/// The borrow lasts until the returned `Ref` exits scope. Multiple
/// immutable borrows can be taken out at the same time.
///
/// # Panics
///
/// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
/// [`try_borrow`](#method.try_borrow).
///
/// # Examples
///
/// ```
/// use std::cell::RefCell;
///
/// let c = RefCell::new(5);
///
/// let borrowed_five = c.borrow();
/// let borrowed_five2 = c.borrow();
/// ```
///
/// An example of panic:
///
/// ```should_panic
/// use std::cell::RefCell;
///
/// let c = RefCell::new(5);
///
/// let m = c.borrow_mut();
/// let b = c.borrow(); // this causes a panic
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[inline]
#[track_caller]
pub fn borrow(&self) -> Ref<'_, T> {
match self.try_borrow() {
Ok(b) => b,
Err(err) => panic_already_mutably_borrowed(err),
}
}
/// Immutably borrows the wrapped value, returning an error if the value is currently mutably
/// borrowed.
///
/// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be