-
Notifications
You must be signed in to change notification settings - Fork 13.2k
/
Copy pathPassWrapper.cpp
1177 lines (1019 loc) · 38.3 KB
/
PassWrapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <stdio.h>
#include <vector>
#include <set>
#include "rustllvm.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/AssemblyAnnotationWriter.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include "llvm/LTO/LTO.h"
#include "llvm-c/Transforms/PassManagerBuilder.h"
using namespace llvm;
using namespace llvm::legacy;
extern cl::opt<bool> EnableARMEHABI;
typedef struct LLVMOpaquePass *LLVMPassRef;
typedef struct LLVMOpaqueTargetMachine *LLVMTargetMachineRef;
DEFINE_STDCXX_CONVERSION_FUNCTIONS(Pass, LLVMPassRef)
DEFINE_STDCXX_CONVERSION_FUNCTIONS(TargetMachine, LLVMTargetMachineRef)
DEFINE_STDCXX_CONVERSION_FUNCTIONS(PassManagerBuilder,
LLVMPassManagerBuilderRef)
extern "C" void LLVMInitializePasses() {
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeCodeGen(Registry);
initializeScalarOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeInstrumentation(Registry);
initializeTarget(Registry);
}
enum class LLVMRustPassKind {
Other,
Function,
Module,
};
static LLVMRustPassKind toRust(PassKind Kind) {
switch (Kind) {
case PT_Function:
return LLVMRustPassKind::Function;
case PT_Module:
return LLVMRustPassKind::Module;
default:
return LLVMRustPassKind::Other;
}
}
extern "C" LLVMPassRef LLVMRustFindAndCreatePass(const char *PassName) {
StringRef SR(PassName);
PassRegistry *PR = PassRegistry::getPassRegistry();
const PassInfo *PI = PR->getPassInfo(SR);
if (PI) {
return wrap(PI->createPass());
}
return nullptr;
}
extern "C" LLVMRustPassKind LLVMRustPassKind(LLVMPassRef RustPass) {
assert(RustPass);
Pass *Pass = unwrap(RustPass);
return toRust(Pass->getPassKind());
}
extern "C" void LLVMRustAddPass(LLVMPassManagerRef PMR, LLVMPassRef RustPass) {
assert(RustPass);
Pass *Pass = unwrap(RustPass);
PassManagerBase *PMB = unwrap(PMR);
PMB->add(Pass);
}
extern "C"
void LLVMRustPassManagerBuilderPopulateThinLTOPassManager(
LLVMPassManagerBuilderRef PMBR,
LLVMPassManagerRef PMR
) {
unwrap(PMBR)->populateThinLTOPassManager(*unwrap(PMR));
}
#ifdef LLVM_COMPONENT_X86
#define SUBTARGET_X86 SUBTARGET(X86)
#else
#define SUBTARGET_X86
#endif
#ifdef LLVM_COMPONENT_ARM
#define SUBTARGET_ARM SUBTARGET(ARM)
#else
#define SUBTARGET_ARM
#endif
#ifdef LLVM_COMPONENT_AARCH64
#define SUBTARGET_AARCH64 SUBTARGET(AArch64)
#else
#define SUBTARGET_AARCH64
#endif
#ifdef LLVM_COMPONENT_MIPS
#define SUBTARGET_MIPS SUBTARGET(Mips)
#else
#define SUBTARGET_MIPS
#endif
#ifdef LLVM_COMPONENT_POWERPC
#define SUBTARGET_PPC SUBTARGET(PPC)
#else
#define SUBTARGET_PPC
#endif
#ifdef LLVM_COMPONENT_SYSTEMZ
#define SUBTARGET_SYSTEMZ SUBTARGET(SystemZ)
#else
#define SUBTARGET_SYSTEMZ
#endif
#ifdef LLVM_COMPONENT_MSP430
#define SUBTARGET_MSP430 SUBTARGET(MSP430)
#else
#define SUBTARGET_MSP430
#endif
#ifdef LLVM_COMPONENT_RISCV
#define SUBTARGET_RISCV SUBTARGET(RISCV)
#else
#define SUBTARGET_RISCV
#endif
#ifdef LLVM_COMPONENT_SPARC
#define SUBTARGET_SPARC SUBTARGET(Sparc)
#else
#define SUBTARGET_SPARC
#endif
#ifdef LLVM_COMPONENT_HEXAGON
#define SUBTARGET_HEXAGON SUBTARGET(Hexagon)
#else
#define SUBTARGET_HEXAGON
#endif
#define GEN_SUBTARGETS \
SUBTARGET_X86 \
SUBTARGET_ARM \
SUBTARGET_AARCH64 \
SUBTARGET_MIPS \
SUBTARGET_PPC \
SUBTARGET_SYSTEMZ \
SUBTARGET_MSP430 \
SUBTARGET_SPARC \
SUBTARGET_HEXAGON \
SUBTARGET_RISCV \
#define SUBTARGET(x) \
namespace llvm { \
extern const SubtargetFeatureKV x##FeatureKV[]; \
extern const SubtargetFeatureKV x##SubTypeKV[]; \
}
GEN_SUBTARGETS
#undef SUBTARGET
extern "C" bool LLVMRustHasFeature(LLVMTargetMachineRef TM,
const char *Feature) {
TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
return MCInfo->checkFeatures(std::string("+") + Feature);
}
enum class LLVMRustCodeModel {
Other,
Small,
Kernel,
Medium,
Large,
None,
};
static CodeModel::Model fromRust(LLVMRustCodeModel Model) {
switch (Model) {
case LLVMRustCodeModel::Small:
return CodeModel::Small;
case LLVMRustCodeModel::Kernel:
return CodeModel::Kernel;
case LLVMRustCodeModel::Medium:
return CodeModel::Medium;
case LLVMRustCodeModel::Large:
return CodeModel::Large;
default:
report_fatal_error("Bad CodeModel.");
}
}
enum class LLVMRustCodeGenOptLevel {
Other,
None,
Less,
Default,
Aggressive,
};
static CodeGenOpt::Level fromRust(LLVMRustCodeGenOptLevel Level) {
switch (Level) {
case LLVMRustCodeGenOptLevel::None:
return CodeGenOpt::None;
case LLVMRustCodeGenOptLevel::Less:
return CodeGenOpt::Less;
case LLVMRustCodeGenOptLevel::Default:
return CodeGenOpt::Default;
case LLVMRustCodeGenOptLevel::Aggressive:
return CodeGenOpt::Aggressive;
default:
report_fatal_error("Bad CodeGenOptLevel.");
}
}
enum class LLVMRustRelocMode {
Default,
Static,
PIC,
DynamicNoPic,
ROPI,
RWPI,
ROPIRWPI,
};
static Optional<Reloc::Model> fromRust(LLVMRustRelocMode RustReloc) {
switch (RustReloc) {
case LLVMRustRelocMode::Default:
return None;
case LLVMRustRelocMode::Static:
return Reloc::Static;
case LLVMRustRelocMode::PIC:
return Reloc::PIC_;
case LLVMRustRelocMode::DynamicNoPic:
return Reloc::DynamicNoPIC;
case LLVMRustRelocMode::ROPI:
return Reloc::ROPI;
case LLVMRustRelocMode::RWPI:
return Reloc::RWPI;
case LLVMRustRelocMode::ROPIRWPI:
return Reloc::ROPI_RWPI;
}
report_fatal_error("Bad RelocModel.");
}
#ifdef LLVM_RUSTLLVM
/// getLongestEntryLength - Return the length of the longest entry in the table.
///
static size_t getLongestEntryLength(ArrayRef<SubtargetFeatureKV> Table) {
size_t MaxLen = 0;
for (auto &I : Table)
MaxLen = std::max(MaxLen, std::strlen(I.Key));
return MaxLen;
}
extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef TM) {
const TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const Triple::ArchType HostArch = Triple(sys::getProcessTriple()).getArch();
const Triple::ArchType TargetArch = Target->getTargetTriple().getArch();
const ArrayRef<SubtargetFeatureKV> CPUTable = MCInfo->getCPUTable();
unsigned MaxCPULen = getLongestEntryLength(CPUTable);
printf("Available CPUs for this target:\n");
if (HostArch == TargetArch) {
const StringRef HostCPU = sys::getHostCPUName();
printf(" %-*s - Select the CPU of the current host (currently %.*s).\n",
MaxCPULen, "native", (int)HostCPU.size(), HostCPU.data());
}
for (auto &CPU : CPUTable)
printf(" %-*s - %s.\n", MaxCPULen, CPU.Key, CPU.Desc);
printf("\n");
}
extern "C" void LLVMRustPrintTargetFeatures(LLVMTargetMachineRef TM) {
const TargetMachine *Target = unwrap(TM);
const MCSubtargetInfo *MCInfo = Target->getMCSubtargetInfo();
const ArrayRef<SubtargetFeatureKV> FeatTable = MCInfo->getFeatureTable();
unsigned MaxFeatLen = getLongestEntryLength(FeatTable);
printf("Available features for this target:\n");
for (auto &Feature : FeatTable)
printf(" %-*s - %s.\n", MaxFeatLen, Feature.Key, Feature.Desc);
printf("\n");
printf("Use +feature to enable a feature, or -feature to disable it.\n"
"For example, rustc -C -target-cpu=mycpu -C "
"target-feature=+feature1,-feature2\n\n");
}
#else
extern "C" void LLVMRustPrintTargetCPUs(LLVMTargetMachineRef) {
printf("Target CPU help is not supported by this LLVM version.\n\n");
}
extern "C" void LLVMRustPrintTargetFeatures(LLVMTargetMachineRef) {
printf("Target features help is not supported by this LLVM version.\n\n");
}
#endif
extern "C" const char* LLVMRustGetHostCPUName(size_t *len) {
StringRef Name = sys::getHostCPUName();
*len = Name.size();
return Name.data();
}
extern "C" LLVMTargetMachineRef LLVMRustCreateTargetMachine(
const char *TripleStr, const char *CPU, const char *Feature,
LLVMRustCodeModel RustCM, LLVMRustRelocMode RustReloc,
LLVMRustCodeGenOptLevel RustOptLevel, bool UseSoftFloat,
bool PositionIndependentExecutable, bool FunctionSections,
bool DataSections,
bool TrapUnreachable,
bool Singlethread,
bool AsmComments,
bool EmitStackSizeSection) {
auto OptLevel = fromRust(RustOptLevel);
auto RM = fromRust(RustReloc);
std::string Error;
Triple Trip(Triple::normalize(TripleStr));
const llvm::Target *TheTarget =
TargetRegistry::lookupTarget(Trip.getTriple(), Error);
if (TheTarget == nullptr) {
LLVMRustSetLastError(Error.c_str());
return nullptr;
}
TargetOptions Options;
Options.FloatABIType = FloatABI::Default;
if (UseSoftFloat) {
Options.FloatABIType = FloatABI::Soft;
}
Options.DataSections = DataSections;
Options.FunctionSections = FunctionSections;
Options.MCOptions.AsmVerbose = AsmComments;
Options.MCOptions.PreserveAsmComments = AsmComments;
if (TrapUnreachable) {
// Tell LLVM to codegen `unreachable` into an explicit trap instruction.
// This limits the extent of possible undefined behavior in some cases, as
// it prevents control flow from "falling through" into whatever code
// happens to be laid out next in memory.
Options.TrapUnreachable = true;
}
if (Singlethread) {
Options.ThreadModel = ThreadModel::Single;
}
Options.EmitStackSizeSection = EmitStackSizeSection;
Optional<CodeModel::Model> CM;
if (RustCM != LLVMRustCodeModel::None)
CM = fromRust(RustCM);
TargetMachine *TM = TheTarget->createTargetMachine(
Trip.getTriple(), CPU, Feature, Options, RM, CM, OptLevel);
return wrap(TM);
}
extern "C" void LLVMRustDisposeTargetMachine(LLVMTargetMachineRef TM) {
delete unwrap(TM);
}
// Unfortunately, LLVM doesn't expose a C API to add the corresponding analysis
// passes for a target to a pass manager. We export that functionality through
// this function.
extern "C" void LLVMRustAddAnalysisPasses(LLVMTargetMachineRef TM,
LLVMPassManagerRef PMR,
LLVMModuleRef M) {
PassManagerBase *PM = unwrap(PMR);
PM->add(
createTargetTransformInfoWrapperPass(unwrap(TM)->getTargetIRAnalysis()));
}
extern "C" void LLVMRustConfigurePassManagerBuilder(
LLVMPassManagerBuilderRef PMBR, LLVMRustCodeGenOptLevel OptLevel,
bool MergeFunctions, bool SLPVectorize, bool LoopVectorize, bool PrepareForThinLTO,
const char* PGOGenPath, const char* PGOUsePath) {
#if LLVM_VERSION_GE(7, 0)
unwrap(PMBR)->MergeFunctions = MergeFunctions;
#endif
unwrap(PMBR)->SLPVectorize = SLPVectorize;
unwrap(PMBR)->OptLevel = fromRust(OptLevel);
unwrap(PMBR)->LoopVectorize = LoopVectorize;
unwrap(PMBR)->PrepareForThinLTO = PrepareForThinLTO;
if (PGOGenPath) {
assert(!PGOUsePath);
unwrap(PMBR)->EnablePGOInstrGen = true;
unwrap(PMBR)->PGOInstrGen = PGOGenPath;
}
if (PGOUsePath) {
assert(!PGOGenPath);
unwrap(PMBR)->PGOInstrUse = PGOUsePath;
}
}
// Unfortunately, the LLVM C API doesn't provide a way to set the `LibraryInfo`
// field of a PassManagerBuilder, we expose our own method of doing so.
extern "C" void LLVMRustAddBuilderLibraryInfo(LLVMPassManagerBuilderRef PMBR,
LLVMModuleRef M,
bool DisableSimplifyLibCalls) {
Triple TargetTriple(unwrap(M)->getTargetTriple());
TargetLibraryInfoImpl *TLI = new TargetLibraryInfoImpl(TargetTriple);
if (DisableSimplifyLibCalls)
TLI->disableAllFunctions();
unwrap(PMBR)->LibraryInfo = TLI;
}
// Unfortunately, the LLVM C API doesn't provide a way to create the
// TargetLibraryInfo pass, so we use this method to do so.
extern "C" void LLVMRustAddLibraryInfo(LLVMPassManagerRef PMR, LLVMModuleRef M,
bool DisableSimplifyLibCalls) {
Triple TargetTriple(unwrap(M)->getTargetTriple());
TargetLibraryInfoImpl TLII(TargetTriple);
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
unwrap(PMR)->add(new TargetLibraryInfoWrapperPass(TLII));
}
// Unfortunately, the LLVM C API doesn't provide an easy way of iterating over
// all the functions in a module, so we do that manually here. You'll find
// similar code in clang's BackendUtil.cpp file.
extern "C" void LLVMRustRunFunctionPassManager(LLVMPassManagerRef PMR,
LLVMModuleRef M) {
llvm::legacy::FunctionPassManager *P =
unwrap<llvm::legacy::FunctionPassManager>(PMR);
P->doInitialization();
// Upgrade all calls to old intrinsics first.
for (Module::iterator I = unwrap(M)->begin(), E = unwrap(M)->end(); I != E;)
UpgradeCallsToIntrinsic(&*I++); // must be post-increment, as we remove
for (Module::iterator I = unwrap(M)->begin(), E = unwrap(M)->end(); I != E;
++I)
if (!I->isDeclaration())
P->run(*I);
P->doFinalization();
}
extern "C" void LLVMRustSetLLVMOptions(int Argc, char **Argv) {
// Initializing the command-line options more than once is not allowed. So,
// check if they've already been initialized. (This could happen if we're
// being called from rustpkg, for example). If the arguments change, then
// that's just kinda unfortunate.
static bool Initialized = false;
if (Initialized)
return;
Initialized = true;
cl::ParseCommandLineOptions(Argc, Argv);
}
enum class LLVMRustFileType {
Other,
AssemblyFile,
ObjectFile,
};
static TargetMachine::CodeGenFileType fromRust(LLVMRustFileType Type) {
switch (Type) {
case LLVMRustFileType::AssemblyFile:
return TargetMachine::CGFT_AssemblyFile;
case LLVMRustFileType::ObjectFile:
return TargetMachine::CGFT_ObjectFile;
default:
report_fatal_error("Bad FileType.");
}
}
extern "C" LLVMRustResult
LLVMRustWriteOutputFile(LLVMTargetMachineRef Target, LLVMPassManagerRef PMR,
LLVMModuleRef M, const char *Path,
LLVMRustFileType RustFileType) {
llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR);
auto FileType = fromRust(RustFileType);
std::string ErrorInfo;
std::error_code EC;
raw_fd_ostream OS(Path, EC, sys::fs::F_None);
if (EC)
ErrorInfo = EC.message();
if (ErrorInfo != "") {
LLVMRustSetLastError(ErrorInfo.c_str());
return LLVMRustResult::Failure;
}
#if LLVM_VERSION_GE(7, 0)
buffer_ostream BOS(OS);
unwrap(Target)->addPassesToEmitFile(*PM, BOS, nullptr, FileType, false);
#else
unwrap(Target)->addPassesToEmitFile(*PM, OS, FileType, false);
#endif
PM->run(*unwrap(M));
// Apparently `addPassesToEmitFile` adds a pointer to our on-the-stack output
// stream (OS), so the only real safe place to delete this is here? Don't we
// wish this was written in Rust?
delete PM;
return LLVMRustResult::Success;
}
// Callback to demangle function name
// Parameters:
// * name to be demangled
// * name len
// * output buffer
// * output buffer len
// Returns len of demangled string, or 0 if demangle failed.
typedef size_t (*DemangleFn)(const char*, size_t, char*, size_t);
namespace {
class RustAssemblyAnnotationWriter : public AssemblyAnnotationWriter {
DemangleFn Demangle;
std::vector<char> Buf;
public:
RustAssemblyAnnotationWriter(DemangleFn Demangle) : Demangle(Demangle) {}
// Return empty string if demangle failed
// or if name does not need to be demangled
StringRef CallDemangle(StringRef name) {
if (!Demangle) {
return StringRef();
}
if (Buf.size() < name.size() * 2) {
// Semangled name usually shorter than mangled,
// but allocate twice as much memory just in case
Buf.resize(name.size() * 2);
}
auto R = Demangle(name.data(), name.size(), Buf.data(), Buf.size());
if (!R) {
// Demangle failed.
return StringRef();
}
auto Demangled = StringRef(Buf.data(), R);
if (Demangled == name) {
// Do not print anything if demangled name is equal to mangled.
return StringRef();
}
return Demangled;
}
void emitFunctionAnnot(const Function *F,
formatted_raw_ostream &OS) override {
StringRef Demangled = CallDemangle(F->getName());
if (Demangled.empty()) {
return;
}
OS << "; " << Demangled << "\n";
}
void emitInstructionAnnot(const Instruction *I,
formatted_raw_ostream &OS) override {
const char *Name;
const Value *Value;
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
Name = "call";
Value = CI->getCalledValue();
} else if (const InvokeInst* II = dyn_cast<InvokeInst>(I)) {
Name = "invoke";
Value = II->getCalledValue();
} else {
// Could demangle more operations, e. g.
// `store %place, @function`.
return;
}
if (!Value->hasName()) {
return;
}
StringRef Demangled = CallDemangle(Value->getName());
if (Demangled.empty()) {
return;
}
OS << "; " << Name << " " << Demangled << "\n";
}
};
class RustPrintModulePass : public ModulePass {
raw_ostream* OS;
DemangleFn Demangle;
public:
static char ID;
RustPrintModulePass() : ModulePass(ID), OS(nullptr), Demangle(nullptr) {}
RustPrintModulePass(raw_ostream &OS, DemangleFn Demangle)
: ModulePass(ID), OS(&OS), Demangle(Demangle) {}
bool runOnModule(Module &M) override {
RustAssemblyAnnotationWriter AW(Demangle);
M.print(*OS, &AW, false);
return false;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
static StringRef name() { return "RustPrintModulePass"; }
};
} // namespace
namespace llvm {
void initializeRustPrintModulePassPass(PassRegistry&);
}
char RustPrintModulePass::ID = 0;
INITIALIZE_PASS(RustPrintModulePass, "print-rust-module",
"Print rust module to stderr", false, false)
extern "C" void LLVMRustPrintModule(LLVMPassManagerRef PMR, LLVMModuleRef M,
const char *Path, DemangleFn Demangle) {
llvm::legacy::PassManager *PM = unwrap<llvm::legacy::PassManager>(PMR);
std::string ErrorInfo;
std::error_code EC;
raw_fd_ostream OS(Path, EC, sys::fs::F_None);
if (EC)
ErrorInfo = EC.message();
formatted_raw_ostream FOS(OS);
PM->add(new RustPrintModulePass(FOS, Demangle));
PM->run(*unwrap(M));
}
extern "C" void LLVMRustPrintPasses() {
LLVMInitializePasses();
struct MyListener : PassRegistrationListener {
void passEnumerate(const PassInfo *Info) {
StringRef PassArg = Info->getPassArgument();
StringRef PassName = Info->getPassName();
if (!PassArg.empty()) {
// These unsigned->signed casts could theoretically overflow, but
// realistically never will (and even if, the result is implementation
// defined rather plain UB).
printf("%15.*s - %.*s\n", (int)PassArg.size(), PassArg.data(),
(int)PassName.size(), PassName.data());
}
}
} Listener;
PassRegistry *PR = PassRegistry::getPassRegistry();
PR->enumerateWith(&Listener);
}
extern "C" void LLVMRustAddAlwaysInlinePass(LLVMPassManagerBuilderRef PMBR,
bool AddLifetimes) {
unwrap(PMBR)->Inliner = llvm::createAlwaysInlinerLegacyPass(AddLifetimes);
}
extern "C" void LLVMRustRunRestrictionPass(LLVMModuleRef M, char **Symbols,
size_t Len) {
llvm::legacy::PassManager passes;
auto PreserveFunctions = [=](const GlobalValue &GV) {
for (size_t I = 0; I < Len; I++) {
if (GV.getName() == Symbols[I]) {
return true;
}
}
return false;
};
passes.add(llvm::createInternalizePass(PreserveFunctions));
passes.run(*unwrap(M));
}
extern "C" void LLVMRustMarkAllFunctionsNounwind(LLVMModuleRef M) {
for (Module::iterator GV = unwrap(M)->begin(), E = unwrap(M)->end(); GV != E;
++GV) {
GV->setDoesNotThrow();
Function *F = dyn_cast<Function>(GV);
if (F == nullptr)
continue;
for (Function::iterator B = F->begin(), BE = F->end(); B != BE; ++B) {
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ++I) {
if (isa<InvokeInst>(I)) {
InvokeInst *CI = cast<InvokeInst>(I);
CI->setDoesNotThrow();
}
}
}
}
}
extern "C" void
LLVMRustSetDataLayoutFromTargetMachine(LLVMModuleRef Module,
LLVMTargetMachineRef TMR) {
TargetMachine *Target = unwrap(TMR);
unwrap(Module)->setDataLayout(Target->createDataLayout());
}
extern "C" void LLVMRustSetModulePIELevel(LLVMModuleRef M) {
unwrap(M)->setPIELevel(PIELevel::Level::Large);
}
// Here you'll find an implementation of ThinLTO as used by the Rust compiler
// right now. This ThinLTO support is only enabled on "recent ish" versions of
// LLVM, and otherwise it's just blanket rejected from other compilers.
//
// Most of this implementation is straight copied from LLVM. At the time of
// this writing it wasn't *quite* suitable to reuse more code from upstream
// for our purposes, but we should strive to upstream this support once it's
// ready to go! I figure we may want a bit of testing locally first before
// sending this upstream to LLVM. I hear though they're quite eager to receive
// feedback like this!
//
// If you're reading this code and wondering "what in the world" or you're
// working "good lord by LLVM upgrade is *still* failing due to these bindings"
// then fear not! (ok maybe fear a little). All code here is mostly based
// on `lib/LTO/ThinLTOCodeGenerator.cpp` in LLVM.
//
// You'll find that the general layout here roughly corresponds to the `run`
// method in that file as well as `ProcessThinLTOModule`. Functions are
// specifically commented below as well, but if you're updating this code
// or otherwise trying to understand it, the LLVM source will be useful in
// interpreting the mysteries within.
//
// Otherwise I'll apologize in advance, it probably requires a relatively
// significant investment on your part to "truly understand" what's going on
// here. Not saying I do myself, but it took me awhile staring at LLVM's source
// and various online resources about ThinLTO to make heads or tails of all
// this.
// This is a shared data structure which *must* be threadsafe to share
// read-only amongst threads. This also corresponds basically to the arguments
// of the `ProcessThinLTOModule` function in the LLVM source.
struct LLVMRustThinLTOData {
// The combined index that is the global analysis over all modules we're
// performing ThinLTO for. This is mostly managed by LLVM.
ModuleSummaryIndex Index;
// All modules we may look at, stored as in-memory serialized versions. This
// is later used when inlining to ensure we can extract any module to inline
// from.
StringMap<MemoryBufferRef> ModuleMap;
// A set that we manage of everything we *don't* want internalized. Note that
// this includes all transitive references right now as well, but it may not
// always!
DenseSet<GlobalValue::GUID> GUIDPreservedSymbols;
// Not 100% sure what these are, but they impact what's internalized and
// what's inlined across modules, I believe.
StringMap<FunctionImporter::ImportMapTy> ImportLists;
StringMap<FunctionImporter::ExportSetTy> ExportLists;
StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries;
#if LLVM_VERSION_GE(7, 0)
LLVMRustThinLTOData() : Index(/* HaveGVs = */ false) {}
#endif
};
// Just an argument to the `LLVMRustCreateThinLTOData` function below.
struct LLVMRustThinLTOModule {
const char *identifier;
const char *data;
size_t len;
};
// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`, not sure what it
// does.
static const GlobalValueSummary *
getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) {
auto StrongDefForLinker = llvm::find_if(
GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
auto Linkage = Summary->linkage();
return !GlobalValue::isAvailableExternallyLinkage(Linkage) &&
!GlobalValue::isWeakForLinker(Linkage);
});
if (StrongDefForLinker != GVSummaryList.end())
return StrongDefForLinker->get();
auto FirstDefForLinker = llvm::find_if(
GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
auto Linkage = Summary->linkage();
return !GlobalValue::isAvailableExternallyLinkage(Linkage);
});
if (FirstDefForLinker == GVSummaryList.end())
return nullptr;
return FirstDefForLinker->get();
}
// The main entry point for creating the global ThinLTO analysis. The structure
// here is basically the same as before threads are spawned in the `run`
// function of `lib/LTO/ThinLTOCodeGenerator.cpp`.
extern "C" LLVMRustThinLTOData*
LLVMRustCreateThinLTOData(LLVMRustThinLTOModule *modules,
int num_modules,
const char **preserved_symbols,
int num_symbols) {
auto Ret = llvm::make_unique<LLVMRustThinLTOData>();
// Load each module's summary and merge it into one combined index
for (int i = 0; i < num_modules; i++) {
auto module = &modules[i];
StringRef buffer(module->data, module->len);
MemoryBufferRef mem_buffer(buffer, module->identifier);
Ret->ModuleMap[module->identifier] = mem_buffer;
if (Error Err = readModuleSummaryIndex(mem_buffer, Ret->Index, i)) {
LLVMRustSetLastError(toString(std::move(Err)).c_str());
return nullptr;
}
}
// Collect for each module the list of function it defines (GUID -> Summary)
Ret->Index.collectDefinedGVSummariesPerModule(Ret->ModuleToDefinedGVSummaries);
// Convert the preserved symbols set from string to GUID, this is then needed
// for internalization.
for (int i = 0; i < num_symbols; i++) {
auto GUID = GlobalValue::getGUID(preserved_symbols[i]);
Ret->GUIDPreservedSymbols.insert(GUID);
}
// Collect the import/export lists for all modules from the call-graph in the
// combined index
//
// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp`
#if LLVM_VERSION_GE(7, 0)
auto deadIsPrevailing = [&](GlobalValue::GUID G) {
return PrevailingType::Unknown;
};
#if LLVM_VERSION_GE(8, 0)
computeDeadSymbolsWithConstProp(Ret->Index, Ret->GUIDPreservedSymbols,
deadIsPrevailing, /* ImportEnabled = */ true);
#else
computeDeadSymbols(Ret->Index, Ret->GUIDPreservedSymbols, deadIsPrevailing);
#endif
#else
computeDeadSymbols(Ret->Index, Ret->GUIDPreservedSymbols);
#endif
ComputeCrossModuleImport(
Ret->Index,
Ret->ModuleToDefinedGVSummaries,
Ret->ImportLists,
Ret->ExportLists
);
// Resolve LinkOnce/Weak symbols, this has to be computed early be cause it
// impacts the caching.
//
// This is copied from `lib/LTO/ThinLTOCodeGenerator.cpp` with some of this
// being lifted from `lib/LTO/LTO.cpp` as well
StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
for (auto &I : Ret->Index) {
if (I.second.SummaryList.size() > 1)
PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second.SummaryList);
}
auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
const auto &Prevailing = PrevailingCopy.find(GUID);
if (Prevailing == PrevailingCopy.end())
return true;
return Prevailing->second == S;
};
auto recordNewLinkage = [&](StringRef ModuleIdentifier,
GlobalValue::GUID GUID,
GlobalValue::LinkageTypes NewLinkage) {
ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
};
#if LLVM_VERSION_GE(8, 0)
thinLTOResolvePrevailingInIndex(Ret->Index, isPrevailing, recordNewLinkage);
#else
thinLTOResolveWeakForLinkerInIndex(Ret->Index, isPrevailing, recordNewLinkage);
#endif
// Here we calculate an `ExportedGUIDs` set for use in the `isExported`
// callback below. This callback below will dictate the linkage for all
// summaries in the index, and we basically just only want to ensure that dead
// symbols are internalized. Otherwise everything that's already external
// linkage will stay as external, and internal will stay as internal.
std::set<GlobalValue::GUID> ExportedGUIDs;
for (auto &List : Ret->Index) {
for (auto &GVS: List.second.SummaryList) {
if (GlobalValue::isLocalLinkage(GVS->linkage()))
continue;
auto GUID = GVS->getOriginalName();
if (GVS->flags().Live)
ExportedGUIDs.insert(GUID);
}
}
auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
const auto &ExportList = Ret->ExportLists.find(ModuleIdentifier);
return (ExportList != Ret->ExportLists.end() &&
ExportList->second.count(GUID)) ||
ExportedGUIDs.count(GUID);
};
thinLTOInternalizeAndPromoteInIndex(Ret->Index, isExported);
return Ret.release();
}
extern "C" void
LLVMRustFreeThinLTOData(LLVMRustThinLTOData *Data) {
delete Data;
}
// Below are the various passes that happen *per module* when doing ThinLTO.
//
// In other words, these are the functions that are all run concurrently
// with one another, one per module. The passes here correspond to the analysis
// passes in `lib/LTO/ThinLTOCodeGenerator.cpp`, currently found in the
// `ProcessThinLTOModule` function. Here they're split up into separate steps
// so rustc can save off the intermediate bytecode between each step.
extern "C" bool
LLVMRustPrepareThinLTORename(const LLVMRustThinLTOData *Data, LLVMModuleRef M) {
Module &Mod = *unwrap(M);
if (renameModuleForThinLTO(Mod, Data->Index)) {
LLVMRustSetLastError("renameModuleForThinLTO failed");
return false;
}
return true;
}
extern "C" bool
LLVMRustPrepareThinLTOResolveWeak(const LLVMRustThinLTOData *Data, LLVMModuleRef M) {
Module &Mod = *unwrap(M);
const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier());
#if LLVM_VERSION_GE(8, 0)
thinLTOResolvePrevailingInModule(Mod, DefinedGlobals);
#else
thinLTOResolveWeakForLinkerModule(Mod, DefinedGlobals);
#endif
return true;
}
extern "C" bool
LLVMRustPrepareThinLTOInternalize(const LLVMRustThinLTOData *Data, LLVMModuleRef M) {
Module &Mod = *unwrap(M);
const auto &DefinedGlobals = Data->ModuleToDefinedGVSummaries.lookup(Mod.getModuleIdentifier());
thinLTOInternalizeModule(Mod, DefinedGlobals);
return true;
}
extern "C" bool
LLVMRustPrepareThinLTOImport(const LLVMRustThinLTOData *Data, LLVMModuleRef M) {
Module &Mod = *unwrap(M);
const auto &ImportList = Data->ImportLists.lookup(Mod.getModuleIdentifier());
auto Loader = [&](StringRef Identifier) {
const auto &Memory = Data->ModuleMap.lookup(Identifier);
auto &Context = Mod.getContext();
auto MOrErr = getLazyBitcodeModule(Memory, Context, true, true);
if (!MOrErr)
return MOrErr;
// The rest of this closure is a workaround for
// https://bugs.llvm.org/show_bug.cgi?id=38184 where during ThinLTO imports
// we accidentally import wasm custom sections into different modules,
// duplicating them by in the final output artifact.
//
// The issue is worked around here by manually removing the
// `wasm.custom_sections` named metadata node from any imported module. This