-
Notifications
You must be signed in to change notification settings - Fork 13k
/
mod.rs
609 lines (538 loc) · 24.6 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use libc::c_uint;
use llvm::{self, ValueRef, BasicBlockRef};
use llvm::debuginfo::DIScope;
use rustc::ty::{self, Ty, TypeFoldable};
use rustc::ty::layout::{self, LayoutTyper};
use rustc::mir::{self, Mir};
use rustc::mir::tcx::LvalueTy;
use rustc::ty::subst::Substs;
use rustc::infer::TransNormalize;
use rustc::session::config::FullDebugInfo;
use base;
use builder::Builder;
use common::{self, CrateContext, Funclet};
use debuginfo::{self, declare_local, VariableAccess, VariableKind, FunctionDebugContext};
use monomorphize::Instance;
use abi::FnType;
use type_of;
use syntax_pos::{DUMMY_SP, NO_EXPANSION, BytePos, Span};
use syntax::symbol::keywords;
use std::iter;
use rustc_data_structures::bitvec::BitVector;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
pub use self::constant::trans_static_initializer;
use self::analyze::CleanupKind;
use self::lvalue::{Alignment, LvalueRef};
use rustc::mir::traversal;
use self::operand::{OperandRef, OperandValue};
/// Master context for translating MIR.
pub struct MirContext<'a, 'tcx:'a> {
mir: &'a mir::Mir<'tcx>,
debug_context: debuginfo::FunctionDebugContext,
llfn: ValueRef,
ccx: &'a CrateContext<'a, 'tcx>,
fn_ty: FnType<'tcx>,
/// When unwinding is initiated, we have to store this personality
/// value somewhere so that we can load it and re-use it in the
/// resume instruction. The personality is (afaik) some kind of
/// value used for C++ unwinding, which must filter by type: we
/// don't really care about it very much. Anyway, this value
/// contains an alloca into which the personality is stored and
/// then later loaded when generating the DIVERGE_BLOCK.
llpersonalityslot: Option<ValueRef>,
/// A `Block` for each MIR `BasicBlock`
blocks: IndexVec<mir::BasicBlock, BasicBlockRef>,
/// The funclet status of each basic block
cleanup_kinds: IndexVec<mir::BasicBlock, analyze::CleanupKind>,
/// When targeting MSVC, this stores the cleanup info for each funclet
/// BB. This is initialized as we compute the funclets' head block in RPO.
funclets: &'a IndexVec<mir::BasicBlock, Option<Funclet>>,
/// This stores the landing-pad block for a given BB, computed lazily on GNU
/// and eagerly on MSVC.
landing_pads: IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
/// Cached unreachable block
unreachable_block: Option<BasicBlockRef>,
/// The location where each MIR arg/var/tmp/ret is stored. This is
/// usually an `LvalueRef` representing an alloca, but not always:
/// sometimes we can skip the alloca and just store the value
/// directly using an `OperandRef`, which makes for tighter LLVM
/// IR. The conditions for using an `OperandRef` are as follows:
///
/// - the type of the local must be judged "immediate" by `type_is_immediate`
/// - the operand must never be referenced indirectly
/// - we should not take its address using the `&` operator
/// - nor should it appear in an lvalue path like `tmp.a`
/// - the operand must be defined by an rvalue that can generate immediate
/// values
///
/// Avoiding allocs can also be important for certain intrinsics,
/// notably `expect`.
locals: IndexVec<mir::Local, LocalRef<'tcx>>,
/// Debug information for MIR scopes.
scopes: IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
/// If this function is being monomorphized, this contains the type substitutions used.
param_substs: &'tcx Substs<'tcx>,
}
impl<'a, 'tcx> MirContext<'a, 'tcx> {
pub fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
self.ccx.tcx().trans_apply_param_substs(self.param_substs, value)
}
pub fn set_debug_loc(&mut self, bcx: &Builder, source_info: mir::SourceInfo) {
let (scope, span) = self.debug_loc(source_info);
debuginfo::set_source_location(&self.debug_context, bcx, scope, span);
}
pub fn debug_loc(&mut self, source_info: mir::SourceInfo) -> (DIScope, Span) {
// Bail out if debug info emission is not enabled.
match self.debug_context {
FunctionDebugContext::DebugInfoDisabled |
FunctionDebugContext::FunctionWithoutDebugInfo => {
return (self.scopes[source_info.scope].scope_metadata, source_info.span);
}
FunctionDebugContext::RegularContext(_) =>{}
}
// In order to have a good line stepping behavior in debugger, we overwrite debug
// locations of macro expansions with that of the outermost expansion site
// (unless the crate is being compiled with `-Z debug-macros`).
if source_info.span.ctxt == NO_EXPANSION ||
self.ccx.sess().opts.debugging_opts.debug_macros {
let scope = self.scope_metadata_for_loc(source_info.scope, source_info.span.lo);
(scope, source_info.span)
} else {
// Walk up the macro expansion chain until we reach a non-expanded span.
// We also stop at the function body level because no line stepping can occurr
// at the level above that.
let mut span = source_info.span;
while span.ctxt != NO_EXPANSION && span.ctxt != self.mir.span.ctxt {
if let Some(info) = span.ctxt.outer().expn_info() {
span = info.call_site;
} else {
break;
}
}
let scope = self.scope_metadata_for_loc(source_info.scope, span.lo);
// Use span of the outermost expansion site, while keeping the original lexical scope.
(scope, span)
}
}
// DILocations inherit source file name from the parent DIScope. Due to macro expansions
// it may so happen that the current span belongs to a different file than the DIScope
// corresponding to span's containing visibility scope. If so, we need to create a DIScope
// "extension" into that file.
fn scope_metadata_for_loc(&self, scope_id: mir::VisibilityScope, pos: BytePos)
-> llvm::debuginfo::DIScope {
let scope_metadata = self.scopes[scope_id].scope_metadata;
if pos < self.scopes[scope_id].file_start_pos ||
pos >= self.scopes[scope_id].file_end_pos {
let cm = self.ccx.sess().codemap();
let defining_crate = self.debug_context.get_ref(DUMMY_SP).defining_crate;
debuginfo::extend_scope_to_file(self.ccx,
scope_metadata,
&cm.lookup_char_pos(pos).file,
defining_crate)
} else {
scope_metadata
}
}
}
enum LocalRef<'tcx> {
Lvalue(LvalueRef<'tcx>),
Operand(Option<OperandRef<'tcx>>),
}
impl<'tcx> LocalRef<'tcx> {
fn new_operand<'a>(ccx: &CrateContext<'a, 'tcx>,
ty: Ty<'tcx>) -> LocalRef<'tcx> {
if common::type_is_zero_size(ccx, ty) {
// Zero-size temporaries aren't always initialized, which
// doesn't matter because they don't contain data, but
// we need something in the operand.
LocalRef::Operand(Some(OperandRef::new_zst(ccx, ty)))
} else {
LocalRef::Operand(None)
}
}
}
///////////////////////////////////////////////////////////////////////////
pub fn trans_mir<'a, 'tcx: 'a>(
ccx: &'a CrateContext<'a, 'tcx>,
llfn: ValueRef,
mir: &'a Mir<'tcx>,
instance: Instance<'tcx>,
sig: ty::FnSig<'tcx>,
) {
let fn_ty = FnType::new(ccx, sig, &[]);
debug!("fn_ty: {:?}", fn_ty);
let debug_context =
debuginfo::create_function_debug_context(ccx, instance, sig, llfn, mir);
let bcx = Builder::new_block(ccx, llfn, "start");
if mir.basic_blocks().iter().any(|bb| bb.is_cleanup) {
bcx.set_personality_fn(ccx.eh_personality());
}
let cleanup_kinds = analyze::cleanup_kinds(&mir);
// Allocate a `Block` for every basic block, except
// the start block, if nothing loops back to it.
let reentrant_start_block = !mir.predecessors_for(mir::START_BLOCK).is_empty();
let block_bcxs: IndexVec<mir::BasicBlock, BasicBlockRef> =
mir.basic_blocks().indices().map(|bb| {
if bb == mir::START_BLOCK && !reentrant_start_block {
bcx.llbb()
} else {
bcx.build_sibling_block(&format!("{:?}", bb)).llbb()
}
}).collect();
// Compute debuginfo scopes from MIR scopes.
let scopes = debuginfo::create_mir_scopes(ccx, mir, &debug_context);
let (landing_pads, funclets) = create_funclets(&bcx, &cleanup_kinds, &block_bcxs);
let mut mircx = MirContext {
mir: mir,
llfn: llfn,
fn_ty: fn_ty,
ccx: ccx,
llpersonalityslot: None,
blocks: block_bcxs,
unreachable_block: None,
cleanup_kinds: cleanup_kinds,
landing_pads: landing_pads,
funclets: &funclets,
scopes: scopes,
locals: IndexVec::new(),
debug_context: debug_context,
param_substs: {
assert!(!instance.substs.needs_infer());
instance.substs
},
};
let lvalue_locals = analyze::lvalue_locals(&mircx);
// Allocate variable and temp allocas
mircx.locals = {
let args = arg_local_refs(&bcx, &mircx, &mircx.scopes, &lvalue_locals);
let mut allocate_local = |local| {
let decl = &mir.local_decls[local];
let ty = mircx.monomorphize(&decl.ty);
if let Some(name) = decl.name {
// User variable
let debug_scope = mircx.scopes[decl.source_info.scope];
let dbg = debug_scope.is_valid() && bcx.sess().opts.debuginfo == FullDebugInfo;
if !lvalue_locals.contains(local.index()) && !dbg {
debug!("alloc: {:?} ({}) -> operand", local, name);
return LocalRef::new_operand(bcx.ccx, ty);
}
debug!("alloc: {:?} ({}) -> lvalue", local, name);
assert!(!ty.has_erasable_regions());
let lvalue = LvalueRef::alloca(&bcx, ty, &name.as_str());
if dbg {
let (scope, span) = mircx.debug_loc(decl.source_info);
declare_local(&bcx, &mircx.debug_context, name, ty, scope,
VariableAccess::DirectVariable { alloca: lvalue.llval },
VariableKind::LocalVariable, span);
}
LocalRef::Lvalue(lvalue)
} else {
// Temporary or return pointer
if local == mir::RETURN_POINTER && mircx.fn_ty.ret.is_indirect() {
debug!("alloc: {:?} (return pointer) -> lvalue", local);
let llretptr = llvm::get_param(llfn, 0);
LocalRef::Lvalue(LvalueRef::new_sized(llretptr, LvalueTy::from_ty(ty),
Alignment::AbiAligned))
} else if lvalue_locals.contains(local.index()) {
debug!("alloc: {:?} -> lvalue", local);
assert!(!ty.has_erasable_regions());
LocalRef::Lvalue(LvalueRef::alloca(&bcx, ty, &format!("{:?}", local)))
} else {
// If this is an immediate local, we do not create an
// alloca in advance. Instead we wait until we see the
// definition and update the operand there.
debug!("alloc: {:?} -> operand", local);
LocalRef::new_operand(bcx.ccx, ty)
}
}
};
let retptr = allocate_local(mir::RETURN_POINTER);
iter::once(retptr)
.chain(args.into_iter())
.chain(mir.vars_and_temps_iter().map(allocate_local))
.collect()
};
// Branch to the START block, if it's not the entry block.
if reentrant_start_block {
bcx.br(mircx.blocks[mir::START_BLOCK]);
}
// Up until here, IR instructions for this function have explicitly not been annotated with
// source code location, so we don't step into call setup code. From here on, source location
// emitting should be enabled.
debuginfo::start_emitting_source_locations(&mircx.debug_context);
let rpo = traversal::reverse_postorder(&mir);
let mut visited = BitVector::new(mir.basic_blocks().len());
// Translate the body of each block using reverse postorder
for (bb, _) in rpo {
visited.insert(bb.index());
mircx.trans_block(bb);
}
// Remove blocks that haven't been visited, or have no
// predecessors.
for bb in mir.basic_blocks().indices() {
// Unreachable block
if !visited.contains(bb.index()) {
debug!("trans_mir: block {:?} was not visited", bb);
unsafe {
llvm::LLVMDeleteBasicBlock(mircx.blocks[bb]);
}
}
}
}
fn create_funclets<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
cleanup_kinds: &IndexVec<mir::BasicBlock, CleanupKind>,
block_bcxs: &IndexVec<mir::BasicBlock, BasicBlockRef>)
-> (IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
IndexVec<mir::BasicBlock, Option<Funclet>>)
{
block_bcxs.iter_enumerated().zip(cleanup_kinds).map(|((bb, &llbb), cleanup_kind)| {
match *cleanup_kind {
CleanupKind::Funclet if base::wants_msvc_seh(bcx.sess()) => {
let cleanup_bcx = bcx.build_sibling_block(&format!("funclet_{:?}", bb));
let cleanup = cleanup_bcx.cleanup_pad(None, &[]);
cleanup_bcx.br(llbb);
(Some(cleanup_bcx.llbb()), Some(Funclet::new(cleanup)))
}
_ => (None, None)
}
}).unzip()
}
/// Produce, for each argument, a `ValueRef` pointing at the
/// argument's value. As arguments are lvalues, these are always
/// indirect.
fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
mircx: &MirContext<'a, 'tcx>,
scopes: &IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
lvalue_locals: &BitVector)
-> Vec<LocalRef<'tcx>> {
let mir = mircx.mir;
let tcx = bcx.tcx();
let mut idx = 0;
let mut llarg_idx = mircx.fn_ty.ret.is_indirect() as usize;
// Get the argument scope, if it exists and if we need it.
let arg_scope = scopes[mir::ARGUMENT_VISIBILITY_SCOPE];
let arg_scope = if arg_scope.is_valid() && bcx.sess().opts.debuginfo == FullDebugInfo {
Some(arg_scope.scope_metadata)
} else {
None
};
mir.args_iter().enumerate().map(|(arg_index, local)| {
let arg_decl = &mir.local_decls[local];
let arg_ty = mircx.monomorphize(&arg_decl.ty);
if Some(local) == mir.spread_arg {
// This argument (e.g. the last argument in the "rust-call" ABI)
// is a tuple that was spread at the ABI level and now we have
// to reconstruct it into a tuple local variable, from multiple
// individual LLVM function arguments.
let tupled_arg_tys = match arg_ty.sty {
ty::TyTuple(ref tys, _) => tys,
_ => bug!("spread argument isn't a tuple?!")
};
let lvalue = LvalueRef::alloca(bcx, arg_ty, &format!("arg{}", arg_index));
for (i, &tupled_arg_ty) in tupled_arg_tys.iter().enumerate() {
let (dst, _) = lvalue.trans_field_ptr(bcx, i);
let arg = &mircx.fn_ty.args[idx];
idx += 1;
if common::type_is_fat_ptr(bcx.ccx, tupled_arg_ty) {
// We pass fat pointers as two words, but inside the tuple
// they are the two sub-fields of a single aggregate field.
let meta = &mircx.fn_ty.args[idx];
idx += 1;
arg.store_fn_arg(bcx, &mut llarg_idx, base::get_dataptr(bcx, dst));
meta.store_fn_arg(bcx, &mut llarg_idx, base::get_meta(bcx, dst));
} else {
arg.store_fn_arg(bcx, &mut llarg_idx, dst);
}
}
// Now that we have one alloca that contains the aggregate value,
// we can create one debuginfo entry for the argument.
arg_scope.map(|scope| {
let variable_access = VariableAccess::DirectVariable {
alloca: lvalue.llval
};
declare_local(
bcx,
&mircx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg_ty, scope,
variable_access,
VariableKind::ArgumentVariable(arg_index + 1),
DUMMY_SP
);
});
return LocalRef::Lvalue(lvalue);
}
let arg = &mircx.fn_ty.args[idx];
idx += 1;
let llval = if arg.is_indirect() && bcx.sess().opts.debuginfo != FullDebugInfo {
// Don't copy an indirect argument to an alloca, the caller
// already put it in a temporary alloca and gave it up, unless
// we emit extra-debug-info, which requires local allocas :(.
// FIXME: lifetimes
if arg.pad.is_some() {
llarg_idx += 1;
}
let llarg = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
llarg_idx += 1;
llarg
} else if !lvalue_locals.contains(local.index()) &&
!arg.is_indirect() && arg.cast.is_none() &&
arg_scope.is_none() {
if arg.is_ignore() {
return LocalRef::new_operand(bcx.ccx, arg_ty);
}
// We don't have to cast or keep the argument in the alloca.
// FIXME(eddyb): We should figure out how to use llvm.dbg.value instead
// of putting everything in allocas just so we can use llvm.dbg.declare.
if arg.pad.is_some() {
llarg_idx += 1;
}
let llarg = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
llarg_idx += 1;
let val = if common::type_is_fat_ptr(bcx.ccx, arg_ty) {
let meta = &mircx.fn_ty.args[idx];
idx += 1;
assert_eq!((meta.cast, meta.pad), (None, None));
let llmeta = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
llarg_idx += 1;
// FIXME(eddyb) As we can't perfectly represent the data and/or
// vtable pointer in a fat pointers in Rust's typesystem, and
// because we split fat pointers into two ArgType's, they're
// not the right type so we have to cast them for now.
let pointee = match arg_ty.sty {
ty::TyRef(_, ty::TypeAndMut{ty, ..}) |
ty::TyRawPtr(ty::TypeAndMut{ty, ..}) => ty,
ty::TyAdt(def, _) if def.is_box() => arg_ty.boxed_ty(),
_ => bug!()
};
let data_llty = type_of::in_memory_type_of(bcx.ccx, pointee);
let meta_llty = type_of::unsized_info_ty(bcx.ccx, pointee);
let llarg = bcx.pointercast(llarg, data_llty.ptr_to());
let llmeta = bcx.pointercast(llmeta, meta_llty);
OperandValue::Pair(llarg, llmeta)
} else {
OperandValue::Immediate(llarg)
};
let operand = OperandRef {
val: val,
ty: arg_ty
};
return LocalRef::Operand(Some(operand.unpack_if_pair(bcx)));
} else {
let lltemp = LvalueRef::alloca(bcx, arg_ty, &format!("arg{}", arg_index));
if common::type_is_fat_ptr(bcx.ccx, arg_ty) {
// we pass fat pointers as two words, but we want to
// represent them internally as a pointer to two words,
// so make an alloca to store them in.
let meta = &mircx.fn_ty.args[idx];
idx += 1;
arg.store_fn_arg(bcx, &mut llarg_idx, base::get_dataptr(bcx, lltemp.llval));
meta.store_fn_arg(bcx, &mut llarg_idx, base::get_meta(bcx, lltemp.llval));
} else {
// otherwise, arg is passed by value, so make a
// temporary and store it there
arg.store_fn_arg(bcx, &mut llarg_idx, lltemp.llval);
}
lltemp.llval
};
arg_scope.map(|scope| {
// Is this a regular argument?
if arg_index > 0 || mir.upvar_decls.is_empty() {
declare_local(
bcx,
&mircx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg_ty,
scope,
VariableAccess::DirectVariable { alloca: llval },
VariableKind::ArgumentVariable(arg_index + 1),
DUMMY_SP
);
return;
}
// Or is it the closure environment?
let (closure_ty, env_ref) = if let ty::TyRef(_, mt) = arg_ty.sty {
(mt.ty, true)
} else {
(arg_ty, false)
};
let upvar_tys = if let ty::TyClosure(def_id, substs) = closure_ty.sty {
substs.upvar_tys(def_id, tcx)
} else {
bug!("upvar_decls with non-closure arg0 type `{}`", closure_ty);
};
// Store the pointer to closure data in an alloca for debuginfo
// because that's what the llvm.dbg.declare intrinsic expects.
// FIXME(eddyb) this shouldn't be necessary but SROA seems to
// mishandle DW_OP_plus not preceded by DW_OP_deref, i.e. it
// doesn't actually strip the offset when splitting the closure
// environment into its components so it ends up out of bounds.
let env_ptr = if !env_ref {
let alloc = bcx.alloca(common::val_ty(llval), "__debuginfo_env_ptr", None);
bcx.store(llval, alloc, None);
alloc
} else {
llval
};
let layout = bcx.ccx.layout_of(closure_ty);
let offsets = match *layout {
layout::Univariant { ref variant, .. } => &variant.offsets[..],
_ => bug!("Closures are only supposed to be Univariant")
};
for (i, (decl, ty)) in mir.upvar_decls.iter().zip(upvar_tys).enumerate() {
let byte_offset_of_var_in_env = offsets[i].bytes();
let ops = unsafe {
[llvm::LLVMRustDIBuilderCreateOpDeref(),
llvm::LLVMRustDIBuilderCreateOpPlus(),
byte_offset_of_var_in_env as i64,
llvm::LLVMRustDIBuilderCreateOpDeref()]
};
// The environment and the capture can each be indirect.
// FIXME(eddyb) see above why we have to keep
// a pointer in an alloca for debuginfo atm.
let mut ops = if env_ref || true { &ops[..] } else { &ops[1..] };
let ty = if let (true, &ty::TyRef(_, mt)) = (decl.by_ref, &ty.sty) {
mt.ty
} else {
ops = &ops[..ops.len() - 1];
ty
};
let variable_access = VariableAccess::IndirectVariable {
alloca: env_ptr,
address_operations: &ops
};
declare_local(
bcx,
&mircx.debug_context,
decl.debug_name,
ty,
scope,
variable_access,
VariableKind::CapturedVariable,
DUMMY_SP
);
}
});
LocalRef::Lvalue(LvalueRef::new_sized(llval, LvalueTy::from_ty(arg_ty),
Alignment::AbiAligned))
}).collect()
}
mod analyze;
mod block;
mod constant;
pub mod lvalue;
mod operand;
mod rvalue;
mod statement;