-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
lto.rs
932 lines (837 loc) · 37 KB
/
lto.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use back::bytecode::{DecodedBytecode, RLIB_BYTECODE_EXTENSION};
use back::symbol_export;
use back::write::{ModuleConfig, with_llvm_pmb, CodegenContext};
use back::write::{self, DiagnosticHandlers, pre_lto_bitcode_filename};
use errors::{FatalError, Handler};
use llvm::archive_ro::ArchiveRO;
use llvm::{True, False};
use llvm;
use memmap;
use rustc::dep_graph::WorkProduct;
use rustc::dep_graph::cgu_reuse_tracker::CguReuse;
use rustc::hir::def_id::LOCAL_CRATE;
use rustc::middle::exported_symbols::SymbolExportLevel;
use rustc::session::config::{self, Lto};
use rustc::util::common::time_ext;
use rustc_data_structures::fx::FxHashMap;
use time_graph::Timeline;
use {ModuleCodegen, ModuleLlvm, ModuleKind};
use libc;
use std::ffi::{CStr, CString};
use std::fs;
use std::ptr;
use std::slice;
use std::sync::Arc;
pub fn crate_type_allows_lto(crate_type: config::CrateType) -> bool {
match crate_type {
config::CrateType::Executable |
config::CrateType::Staticlib |
config::CrateType::Cdylib => true,
config::CrateType::Dylib |
config::CrateType::Rlib |
config::CrateType::ProcMacro => false,
}
}
pub(crate) enum LtoModuleCodegen {
Fat {
module: Option<ModuleCodegen>,
_serialized_bitcode: Vec<SerializedModule>,
},
Thin(ThinModule),
}
impl LtoModuleCodegen {
pub fn name(&self) -> &str {
match *self {
LtoModuleCodegen::Fat { .. } => "everything",
LtoModuleCodegen::Thin(ref m) => m.name(),
}
}
/// Optimize this module within the given codegen context.
///
/// This function is unsafe as it'll return a `ModuleCodegen` still
/// points to LLVM data structures owned by this `LtoModuleCodegen`.
/// It's intended that the module returned is immediately code generated and
/// dropped, and then this LTO module is dropped.
pub(crate) unsafe fn optimize(&mut self,
cgcx: &CodegenContext,
timeline: &mut Timeline)
-> Result<ModuleCodegen, FatalError>
{
match *self {
LtoModuleCodegen::Fat { ref mut module, .. } => {
let module = module.take().unwrap();
{
let config = cgcx.config(module.kind);
let llmod = module.module_llvm.llmod();
let tm = &*module.module_llvm.tm;
run_pass_manager(cgcx, tm, llmod, config, false);
timeline.record("fat-done");
}
Ok(module)
}
LtoModuleCodegen::Thin(ref mut thin) => thin.optimize(cgcx, timeline),
}
}
/// A "gauge" of how costly it is to optimize this module, used to sort
/// biggest modules first.
pub fn cost(&self) -> u64 {
match *self {
// Only one module with fat LTO, so the cost doesn't matter.
LtoModuleCodegen::Fat { .. } => 0,
LtoModuleCodegen::Thin(ref m) => m.cost(),
}
}
}
/// Performs LTO, which in the case of full LTO means merging all modules into
/// a single one and returning it for further optimizing. For ThinLTO, it will
/// do the global analysis necessary and return two lists, one of the modules
/// the need optimization and another for modules that can simply be copied over
/// from the incr. comp. cache.
pub(crate) fn run(cgcx: &CodegenContext,
modules: Vec<ModuleCodegen>,
cached_modules: Vec<(SerializedModule, WorkProduct)>,
timeline: &mut Timeline)
-> Result<(Vec<LtoModuleCodegen>, Vec<WorkProduct>), FatalError>
{
let diag_handler = cgcx.create_diag_handler();
let export_threshold = match cgcx.lto {
// We're just doing LTO for our one crate
Lto::ThinLocal => SymbolExportLevel::Rust,
// We're doing LTO for the entire crate graph
Lto::Fat | Lto::Thin => {
symbol_export::crates_export_threshold(&cgcx.crate_types)
}
Lto::No => panic!("didn't request LTO but we're doing LTO"),
};
let symbol_filter = &|&(ref name, level): &(String, SymbolExportLevel)| {
if level.is_below_threshold(export_threshold) {
let mut bytes = Vec::with_capacity(name.len() + 1);
bytes.extend(name.bytes());
Some(CString::new(bytes).unwrap())
} else {
None
}
};
let exported_symbols = cgcx.exported_symbols
.as_ref().expect("needs exported symbols for LTO");
let mut symbol_white_list = exported_symbols[&LOCAL_CRATE]
.iter()
.filter_map(symbol_filter)
.collect::<Vec<CString>>();
timeline.record("whitelist");
info!("{} symbols to preserve in this crate", symbol_white_list.len());
// If we're performing LTO for the entire crate graph, then for each of our
// upstream dependencies, find the corresponding rlib and load the bitcode
// from the archive.
//
// We save off all the bytecode and LLVM module ids for later processing
// with either fat or thin LTO
let mut upstream_modules = Vec::new();
if cgcx.lto != Lto::ThinLocal {
if cgcx.opts.cg.prefer_dynamic {
diag_handler.struct_err("cannot prefer dynamic linking when performing LTO")
.note("only 'staticlib', 'bin', and 'cdylib' outputs are \
supported with LTO")
.emit();
return Err(FatalError)
}
// Make sure we actually can run LTO
for crate_type in cgcx.crate_types.iter() {
if !crate_type_allows_lto(*crate_type) {
let e = diag_handler.fatal("lto can only be run for executables, cdylibs and \
static library outputs");
return Err(e)
}
}
for &(cnum, ref path) in cgcx.each_linked_rlib_for_lto.iter() {
let exported_symbols = cgcx.exported_symbols
.as_ref().expect("needs exported symbols for LTO");
symbol_white_list.extend(
exported_symbols[&cnum]
.iter()
.filter_map(symbol_filter));
let archive = ArchiveRO::open(&path).expect("wanted an rlib");
let bytecodes = archive.iter().filter_map(|child| {
child.ok().and_then(|c| c.name().map(|name| (name, c)))
}).filter(|&(name, _)| name.ends_with(RLIB_BYTECODE_EXTENSION));
for (name, data) in bytecodes {
info!("adding bytecode {}", name);
let bc_encoded = data.data();
let (bc, id) = time_ext(cgcx.time_passes, None, &format!("decode {}", name), || {
match DecodedBytecode::new(bc_encoded) {
Ok(b) => Ok((b.bytecode(), b.identifier().to_string())),
Err(e) => Err(diag_handler.fatal(&e)),
}
})?;
let bc = SerializedModule::FromRlib(bc);
upstream_modules.push((bc, CString::new(id).unwrap()));
}
timeline.record(&format!("load: {}", path.display()));
}
}
let symbol_white_list = symbol_white_list.iter()
.map(|c| c.as_ptr())
.collect::<Vec<_>>();
match cgcx.lto {
Lto::Fat => {
assert!(cached_modules.is_empty());
let opt_jobs = fat_lto(cgcx,
&diag_handler,
modules,
upstream_modules,
&symbol_white_list,
timeline);
opt_jobs.map(|opt_jobs| (opt_jobs, vec![]))
}
Lto::Thin |
Lto::ThinLocal => {
if cgcx.opts.debugging_opts.cross_lang_lto.enabled() {
unreachable!("We should never reach this case if the LTO step \
is deferred to the linker");
}
thin_lto(cgcx,
&diag_handler,
modules,
upstream_modules,
cached_modules,
&symbol_white_list,
timeline)
}
Lto::No => unreachable!(),
}
}
fn fat_lto(cgcx: &CodegenContext,
diag_handler: &Handler,
mut modules: Vec<ModuleCodegen>,
mut serialized_modules: Vec<(SerializedModule, CString)>,
symbol_white_list: &[*const libc::c_char],
timeline: &mut Timeline)
-> Result<Vec<LtoModuleCodegen>, FatalError>
{
info!("going for a fat lto");
// Find the "costliest" module and merge everything into that codegen unit.
// All the other modules will be serialized and reparsed into the new
// context, so this hopefully avoids serializing and parsing the largest
// codegen unit.
//
// Additionally use a regular module as the base here to ensure that various
// file copy operations in the backend work correctly. The only other kind
// of module here should be an allocator one, and if your crate is smaller
// than the allocator module then the size doesn't really matter anyway.
let (_, costliest_module) = modules.iter()
.enumerate()
.filter(|&(_, module)| module.kind == ModuleKind::Regular)
.map(|(i, module)| {
let cost = unsafe {
llvm::LLVMRustModuleCost(module.module_llvm.llmod())
};
(cost, i)
})
.max()
.expect("must be codegen'ing at least one module");
let module = modules.remove(costliest_module);
let mut serialized_bitcode = Vec::new();
{
let (llcx, llmod) = {
let llvm = &module.module_llvm;
(&llvm.llcx, llvm.llmod())
};
info!("using {:?} as a base module", module.name);
// The linking steps below may produce errors and diagnostics within LLVM
// which we'd like to handle and print, so set up our diagnostic handlers
// (which get unregistered when they go out of scope below).
let _handler = DiagnosticHandlers::new(cgcx, diag_handler, llcx);
// For all other modules we codegened we'll need to link them into our own
// bitcode. All modules were codegened in their own LLVM context, however,
// and we want to move everything to the same LLVM context. Currently the
// way we know of to do that is to serialize them to a string and them parse
// them later. Not great but hey, that's why it's "fat" LTO, right?
for module in modules {
let buffer = ModuleBuffer::new(module.module_llvm.llmod());
let llmod_id = CString::new(&module.name[..]).unwrap();
serialized_modules.push((SerializedModule::Local(buffer), llmod_id));
}
// For all serialized bitcode files we parse them and link them in as we did
// above, this is all mostly handled in C++. Like above, though, we don't
// know much about the memory management here so we err on the side of being
// save and persist everything with the original module.
let mut linker = Linker::new(llmod);
for (bc_decoded, name) in serialized_modules {
info!("linking {:?}", name);
time_ext(cgcx.time_passes, None, &format!("ll link {:?}", name), || {
let data = bc_decoded.data();
linker.add(&data).map_err(|()| {
let msg = format!("failed to load bc of {:?}", name);
write::llvm_err(&diag_handler, msg)
})
})?;
timeline.record(&format!("link {:?}", name));
serialized_bitcode.push(bc_decoded);
}
drop(linker);
cgcx.save_temp_bitcode(&module, "lto.input");
// Internalize everything that *isn't* in our whitelist to help strip out
// more modules and such
unsafe {
let ptr = symbol_white_list.as_ptr();
llvm::LLVMRustRunRestrictionPass(llmod,
ptr as *const *const libc::c_char,
symbol_white_list.len() as libc::size_t);
cgcx.save_temp_bitcode(&module, "lto.after-restriction");
}
if cgcx.no_landing_pads {
unsafe {
llvm::LLVMRustMarkAllFunctionsNounwind(llmod);
}
cgcx.save_temp_bitcode(&module, "lto.after-nounwind");
}
timeline.record("passes");
}
Ok(vec![LtoModuleCodegen::Fat {
module: Some(module),
_serialized_bitcode: serialized_bitcode,
}])
}
struct Linker<'a>(&'a mut llvm::Linker<'a>);
impl Linker<'a> {
fn new(llmod: &'a llvm::Module) -> Self {
unsafe { Linker(llvm::LLVMRustLinkerNew(llmod)) }
}
fn add(&mut self, bytecode: &[u8]) -> Result<(), ()> {
unsafe {
if llvm::LLVMRustLinkerAdd(self.0,
bytecode.as_ptr() as *const libc::c_char,
bytecode.len()) {
Ok(())
} else {
Err(())
}
}
}
}
impl Drop for Linker<'a> {
fn drop(&mut self) {
unsafe { llvm::LLVMRustLinkerFree(&mut *(self.0 as *mut _)); }
}
}
/// Prepare "thin" LTO to get run on these modules.
///
/// The general structure of ThinLTO is quite different from the structure of
/// "fat" LTO above. With "fat" LTO all LLVM modules in question are merged into
/// one giant LLVM module, and then we run more optimization passes over this
/// big module after internalizing most symbols. Thin LTO, on the other hand,
/// avoid this large bottleneck through more targeted optimization.
///
/// At a high level Thin LTO looks like:
///
/// 1. Prepare a "summary" of each LLVM module in question which describes
/// the values inside, cost of the values, etc.
/// 2. Merge the summaries of all modules in question into one "index"
/// 3. Perform some global analysis on this index
/// 4. For each module, use the index and analysis calculated previously to
/// perform local transformations on the module, for example inlining
/// small functions from other modules.
/// 5. Run thin-specific optimization passes over each module, and then code
/// generate everything at the end.
///
/// The summary for each module is intended to be quite cheap, and the global
/// index is relatively quite cheap to create as well. As a result, the goal of
/// ThinLTO is to reduce the bottleneck on LTO and enable LTO to be used in more
/// situations. For example one cheap optimization is that we can parallelize
/// all codegen modules, easily making use of all the cores on a machine.
///
/// With all that in mind, the function here is designed at specifically just
/// calculating the *index* for ThinLTO. This index will then be shared amongst
/// all of the `LtoModuleCodegen` units returned below and destroyed once
/// they all go out of scope.
fn thin_lto(cgcx: &CodegenContext,
diag_handler: &Handler,
modules: Vec<ModuleCodegen>,
serialized_modules: Vec<(SerializedModule, CString)>,
cached_modules: Vec<(SerializedModule, WorkProduct)>,
symbol_white_list: &[*const libc::c_char],
timeline: &mut Timeline)
-> Result<(Vec<LtoModuleCodegen>, Vec<WorkProduct>), FatalError>
{
unsafe {
info!("going for that thin, thin LTO");
let green_modules: FxHashMap<_, _> = cached_modules
.iter()
.map(|&(_, ref wp)| (wp.cgu_name.clone(), wp.clone()))
.collect();
let mut thin_buffers = Vec::new();
let mut module_names = Vec::new();
let mut thin_modules = Vec::new();
// FIXME: right now, like with fat LTO, we serialize all in-memory
// modules before working with them and ThinLTO. We really
// shouldn't do this, however, and instead figure out how to
// extract a summary from an in-memory module and then merge that
// into the global index. It turns out that this loop is by far
// the most expensive portion of this small bit of global
// analysis!
for (i, module) in modules.iter().enumerate() {
info!("local module: {} - {}", i, module.name);
let name = CString::new(module.name.clone()).unwrap();
let buffer = ThinBuffer::new(module.module_llvm.llmod());
// We emit the module after having serialized it into a ThinBuffer
// because only then it will contain the ThinLTO module summary.
if let Some(ref incr_comp_session_dir) = cgcx.incr_comp_session_dir {
if cgcx.config(module.kind).emit_pre_thin_lto_bc {
let path = incr_comp_session_dir
.join(pre_lto_bitcode_filename(&module.name));
fs::write(&path, buffer.data()).unwrap_or_else(|e| {
panic!("Error writing pre-lto-bitcode file `{}`: {}",
path.display(),
e);
});
}
}
thin_modules.push(llvm::ThinLTOModule {
identifier: name.as_ptr(),
data: buffer.data().as_ptr(),
len: buffer.data().len(),
});
thin_buffers.push(buffer);
module_names.push(name);
timeline.record(&module.name);
}
// FIXME: All upstream crates are deserialized internally in the
// function below to extract their summary and modules. Note that
// unlike the loop above we *must* decode and/or read something
// here as these are all just serialized files on disk. An
// improvement, however, to make here would be to store the
// module summary separately from the actual module itself. Right
// now this is store in one large bitcode file, and the entire
// file is deflate-compressed. We could try to bypass some of the
// decompression by storing the index uncompressed and only
// lazily decompressing the bytecode if necessary.
//
// Note that truly taking advantage of this optimization will
// likely be further down the road. We'd have to implement
// incremental ThinLTO first where we could actually avoid
// looking at upstream modules entirely sometimes (the contents,
// we must always unconditionally look at the index).
let mut serialized = Vec::new();
let cached_modules = cached_modules.into_iter().map(|(sm, wp)| {
(sm, CString::new(wp.cgu_name).unwrap())
});
for (module, name) in serialized_modules.into_iter().chain(cached_modules) {
info!("upstream or cached module {:?}", name);
thin_modules.push(llvm::ThinLTOModule {
identifier: name.as_ptr(),
data: module.data().as_ptr(),
len: module.data().len(),
});
serialized.push(module);
module_names.push(name);
}
// Sanity check
assert_eq!(thin_modules.len(), module_names.len());
// Delegate to the C++ bindings to create some data here. Once this is a
// tried-and-true interface we may wish to try to upstream some of this
// to LLVM itself, right now we reimplement a lot of what they do
// upstream...
let data = llvm::LLVMRustCreateThinLTOData(
thin_modules.as_ptr(),
thin_modules.len() as u32,
symbol_white_list.as_ptr(),
symbol_white_list.len() as u32,
).ok_or_else(|| {
write::llvm_err(&diag_handler, "failed to prepare thin LTO context".to_string())
})?;
info!("thin LTO data created");
timeline.record("data");
let import_map = if cgcx.incr_comp_session_dir.is_some() {
ThinLTOImports::from_thin_lto_data(data)
} else {
// If we don't compile incrementally, we don't need to load the
// import data from LLVM.
assert!(green_modules.is_empty());
ThinLTOImports::new()
};
info!("thin LTO import map loaded");
timeline.record("import-map-loaded");
let data = ThinData(data);
// Throw our data in an `Arc` as we'll be sharing it across threads. We
// also put all memory referenced by the C++ data (buffers, ids, etc)
// into the arc as well. After this we'll create a thin module
// codegen per module in this data.
let shared = Arc::new(ThinShared {
data,
thin_buffers,
serialized_modules: serialized,
module_names,
});
let mut copy_jobs = vec![];
let mut opt_jobs = vec![];
info!("checking which modules can be-reused and which have to be re-optimized.");
for (module_index, module_name) in shared.module_names.iter().enumerate() {
let module_name = module_name_to_str(module_name);
// If the module hasn't changed and none of the modules it imports
// from has changed, we can re-use the post-ThinLTO version of the
// module.
if green_modules.contains_key(module_name) {
let imports_all_green = import_map.modules_imported_by(module_name)
.iter()
.all(|imported_module| green_modules.contains_key(imported_module));
if imports_all_green {
let work_product = green_modules[module_name].clone();
copy_jobs.push(work_product);
info!(" - {}: re-used", module_name);
cgcx.cgu_reuse_tracker.set_actual_reuse(module_name,
CguReuse::PostLto);
continue
}
}
info!(" - {}: re-compiled", module_name);
opt_jobs.push(LtoModuleCodegen::Thin(ThinModule {
shared: shared.clone(),
idx: module_index,
}));
}
Ok((opt_jobs, copy_jobs))
}
}
fn run_pass_manager(cgcx: &CodegenContext,
tm: &llvm::TargetMachine,
llmod: &llvm::Module,
config: &ModuleConfig,
thin: bool) {
// Now we have one massive module inside of llmod. Time to run the
// LTO-specific optimization passes that LLVM provides.
//
// This code is based off the code found in llvm's LTO code generator:
// tools/lto/LTOCodeGenerator.cpp
debug!("running the pass manager");
unsafe {
let pm = llvm::LLVMCreatePassManager();
llvm::LLVMRustAddAnalysisPasses(tm, pm, llmod);
if config.verify_llvm_ir {
let pass = llvm::LLVMRustFindAndCreatePass("verify\0".as_ptr() as *const _);
llvm::LLVMRustAddPass(pm, pass.unwrap());
}
// When optimizing for LTO we don't actually pass in `-O0`, but we force
// it to always happen at least with `-O1`.
//
// With ThinLTO we mess around a lot with symbol visibility in a way
// that will actually cause linking failures if we optimize at O0 which
// notable is lacking in dead code elimination. To ensure we at least
// get some optimizations and correctly link we forcibly switch to `-O1`
// to get dead code elimination.
//
// Note that in general this shouldn't matter too much as you typically
// only turn on ThinLTO when you're compiling with optimizations
// otherwise.
let opt_level = config.opt_level.unwrap_or(llvm::CodeGenOptLevel::None);
let opt_level = match opt_level {
llvm::CodeGenOptLevel::None => llvm::CodeGenOptLevel::Less,
level => level,
};
with_llvm_pmb(llmod, config, opt_level, false, &mut |b| {
if thin {
if !llvm::LLVMRustPassManagerBuilderPopulateThinLTOPassManager(b, pm) {
panic!("this version of LLVM does not support ThinLTO");
}
} else {
llvm::LLVMPassManagerBuilderPopulateLTOPassManager(b, pm,
/* Internalize = */ False,
/* RunInliner = */ True);
}
});
if config.verify_llvm_ir {
let pass = llvm::LLVMRustFindAndCreatePass("verify\0".as_ptr() as *const _);
llvm::LLVMRustAddPass(pm, pass.unwrap());
}
time_ext(cgcx.time_passes, None, "LTO passes", ||
llvm::LLVMRunPassManager(pm, llmod));
llvm::LLVMDisposePassManager(pm);
}
debug!("lto done");
}
pub enum SerializedModule {
Local(ModuleBuffer),
FromRlib(Vec<u8>),
FromUncompressedFile(memmap::Mmap),
}
impl SerializedModule {
fn data(&self) -> &[u8] {
match *self {
SerializedModule::Local(ref m) => m.data(),
SerializedModule::FromRlib(ref m) => m,
SerializedModule::FromUncompressedFile(ref m) => m,
}
}
}
pub struct ModuleBuffer(&'static mut llvm::ModuleBuffer);
unsafe impl Send for ModuleBuffer {}
unsafe impl Sync for ModuleBuffer {}
impl ModuleBuffer {
pub fn new(m: &llvm::Module) -> ModuleBuffer {
ModuleBuffer(unsafe {
llvm::LLVMRustModuleBufferCreate(m)
})
}
pub fn data(&self) -> &[u8] {
unsafe {
let ptr = llvm::LLVMRustModuleBufferPtr(self.0);
let len = llvm::LLVMRustModuleBufferLen(self.0);
slice::from_raw_parts(ptr, len)
}
}
}
impl Drop for ModuleBuffer {
fn drop(&mut self) {
unsafe { llvm::LLVMRustModuleBufferFree(&mut *(self.0 as *mut _)); }
}
}
pub struct ThinModule {
shared: Arc<ThinShared>,
idx: usize,
}
struct ThinShared {
data: ThinData,
thin_buffers: Vec<ThinBuffer>,
serialized_modules: Vec<SerializedModule>,
module_names: Vec<CString>,
}
struct ThinData(&'static mut llvm::ThinLTOData);
unsafe impl Send for ThinData {}
unsafe impl Sync for ThinData {}
impl Drop for ThinData {
fn drop(&mut self) {
unsafe {
llvm::LLVMRustFreeThinLTOData(&mut *(self.0 as *mut _));
}
}
}
pub struct ThinBuffer(&'static mut llvm::ThinLTOBuffer);
unsafe impl Send for ThinBuffer {}
unsafe impl Sync for ThinBuffer {}
impl ThinBuffer {
pub fn new(m: &llvm::Module) -> ThinBuffer {
unsafe {
let buffer = llvm::LLVMRustThinLTOBufferCreate(m);
ThinBuffer(buffer)
}
}
pub fn data(&self) -> &[u8] {
unsafe {
let ptr = llvm::LLVMRustThinLTOBufferPtr(self.0) as *const _;
let len = llvm::LLVMRustThinLTOBufferLen(self.0);
slice::from_raw_parts(ptr, len)
}
}
}
impl Drop for ThinBuffer {
fn drop(&mut self) {
unsafe {
llvm::LLVMRustThinLTOBufferFree(&mut *(self.0 as *mut _));
}
}
}
impl ThinModule {
fn name(&self) -> &str {
self.shared.module_names[self.idx].to_str().unwrap()
}
fn cost(&self) -> u64 {
// Yes, that's correct, we're using the size of the bytecode as an
// indicator for how costly this codegen unit is.
self.data().len() as u64
}
fn data(&self) -> &[u8] {
let a = self.shared.thin_buffers.get(self.idx).map(|b| b.data());
a.unwrap_or_else(|| {
let len = self.shared.thin_buffers.len();
self.shared.serialized_modules[self.idx - len].data()
})
}
unsafe fn optimize(&mut self, cgcx: &CodegenContext, timeline: &mut Timeline)
-> Result<ModuleCodegen, FatalError>
{
let diag_handler = cgcx.create_diag_handler();
let tm = (cgcx.tm_factory)().map_err(|e| {
write::llvm_err(&diag_handler, e)
})?;
// Right now the implementation we've got only works over serialized
// modules, so we create a fresh new LLVM context and parse the module
// into that context. One day, however, we may do this for upstream
// crates but for locally codegened modules we may be able to reuse
// that LLVM Context and Module.
let llcx = llvm::LLVMRustContextCreate(cgcx.fewer_names);
let llmod_raw = llvm::LLVMRustParseBitcodeForThinLTO(
llcx,
self.data().as_ptr(),
self.data().len(),
self.shared.module_names[self.idx].as_ptr(),
).ok_or_else(|| {
let msg = "failed to parse bitcode for thin LTO module".to_string();
write::llvm_err(&diag_handler, msg)
})? as *const _;
let module = ModuleCodegen {
module_llvm: ModuleLlvm {
llmod_raw,
llcx,
tm,
},
name: self.name().to_string(),
kind: ModuleKind::Regular,
};
{
let llmod = module.module_llvm.llmod();
cgcx.save_temp_bitcode(&module, "thin-lto-input");
// Before we do much else find the "main" `DICompileUnit` that we'll be
// using below. If we find more than one though then rustc has changed
// in a way we're not ready for, so generate an ICE by returning
// an error.
let mut cu1 = ptr::null_mut();
let mut cu2 = ptr::null_mut();
llvm::LLVMRustThinLTOGetDICompileUnit(llmod, &mut cu1, &mut cu2);
if !cu2.is_null() {
let msg = "multiple source DICompileUnits found".to_string();
return Err(write::llvm_err(&diag_handler, msg))
}
// Like with "fat" LTO, get some better optimizations if landing pads
// are disabled by removing all landing pads.
if cgcx.no_landing_pads {
llvm::LLVMRustMarkAllFunctionsNounwind(llmod);
cgcx.save_temp_bitcode(&module, "thin-lto-after-nounwind");
timeline.record("nounwind");
}
// Up next comes the per-module local analyses that we do for Thin LTO.
// Each of these functions is basically copied from the LLVM
// implementation and then tailored to suit this implementation. Ideally
// each of these would be supported by upstream LLVM but that's perhaps
// a patch for another day!
//
// You can find some more comments about these functions in the LLVM
// bindings we've got (currently `PassWrapper.cpp`)
if !llvm::LLVMRustPrepareThinLTORename(self.shared.data.0, llmod) {
let msg = "failed to prepare thin LTO module".to_string();
return Err(write::llvm_err(&diag_handler, msg))
}
cgcx.save_temp_bitcode(&module, "thin-lto-after-rename");
timeline.record("rename");
if !llvm::LLVMRustPrepareThinLTOResolveWeak(self.shared.data.0, llmod) {
let msg = "failed to prepare thin LTO module".to_string();
return Err(write::llvm_err(&diag_handler, msg))
}
cgcx.save_temp_bitcode(&module, "thin-lto-after-resolve");
timeline.record("resolve");
if !llvm::LLVMRustPrepareThinLTOInternalize(self.shared.data.0, llmod) {
let msg = "failed to prepare thin LTO module".to_string();
return Err(write::llvm_err(&diag_handler, msg))
}
cgcx.save_temp_bitcode(&module, "thin-lto-after-internalize");
timeline.record("internalize");
if !llvm::LLVMRustPrepareThinLTOImport(self.shared.data.0, llmod) {
let msg = "failed to prepare thin LTO module".to_string();
return Err(write::llvm_err(&diag_handler, msg))
}
cgcx.save_temp_bitcode(&module, "thin-lto-after-import");
timeline.record("import");
// Ok now this is a bit unfortunate. This is also something you won't
// find upstream in LLVM's ThinLTO passes! This is a hack for now to
// work around bugs in LLVM.
//
// First discovered in #45511 it was found that as part of ThinLTO
// importing passes LLVM will import `DICompileUnit` metadata
// information across modules. This means that we'll be working with one
// LLVM module that has multiple `DICompileUnit` instances in it (a
// bunch of `llvm.dbg.cu` members). Unfortunately there's a number of
// bugs in LLVM's backend which generates invalid DWARF in a situation
// like this:
//
// https://bugs.llvm.org/show_bug.cgi?id=35212
// https://bugs.llvm.org/show_bug.cgi?id=35562
//
// While the first bug there is fixed the second ended up causing #46346
// which was basically a resurgence of #45511 after LLVM's bug 35212 was
// fixed.
//
// This function below is a huge hack around this problem. The function
// below is defined in `PassWrapper.cpp` and will basically "merge"
// all `DICompileUnit` instances in a module. Basically it'll take all
// the objects, rewrite all pointers of `DISubprogram` to point to the
// first `DICompileUnit`, and then delete all the other units.
//
// This is probably mangling to the debug info slightly (but hopefully
// not too much) but for now at least gets LLVM to emit valid DWARF (or
// so it appears). Hopefully we can remove this once upstream bugs are
// fixed in LLVM.
llvm::LLVMRustThinLTOPatchDICompileUnit(llmod, cu1);
cgcx.save_temp_bitcode(&module, "thin-lto-after-patch");
timeline.record("patch");
// Alright now that we've done everything related to the ThinLTO
// analysis it's time to run some optimizations! Here we use the same
// `run_pass_manager` as the "fat" LTO above except that we tell it to
// populate a thin-specific pass manager, which presumably LLVM treats a
// little differently.
info!("running thin lto passes over {}", module.name);
let config = cgcx.config(module.kind);
run_pass_manager(cgcx, module.module_llvm.tm, llmod, config, true);
cgcx.save_temp_bitcode(&module, "thin-lto-after-pm");
timeline.record("thin-done");
}
Ok(module)
}
}
#[derive(Debug)]
pub struct ThinLTOImports {
// key = llvm name of importing module, value = list of modules it imports from
imports: FxHashMap<String, Vec<String>>,
}
impl ThinLTOImports {
fn new() -> ThinLTOImports {
ThinLTOImports {
imports: FxHashMap(),
}
}
fn modules_imported_by(&self, llvm_module_name: &str) -> &[String] {
self.imports.get(llvm_module_name).map(|v| &v[..]).unwrap_or(&[])
}
/// Load the ThinLTO import map from ThinLTOData.
unsafe fn from_thin_lto_data(data: *const llvm::ThinLTOData) -> ThinLTOImports {
unsafe extern "C" fn imported_module_callback(payload: *mut libc::c_void,
importing_module_name: *const libc::c_char,
imported_module_name: *const libc::c_char) {
let map = &mut* (payload as *mut ThinLTOImports);
let importing_module_name = CStr::from_ptr(importing_module_name);
let importing_module_name = module_name_to_str(&importing_module_name);
let imported_module_name = CStr::from_ptr(imported_module_name);
let imported_module_name = module_name_to_str(&imported_module_name);
if !map.imports.contains_key(importing_module_name) {
map.imports.insert(importing_module_name.to_owned(), vec![]);
}
map.imports
.get_mut(importing_module_name)
.unwrap()
.push(imported_module_name.to_owned());
}
let mut map = ThinLTOImports {
imports: FxHashMap(),
};
llvm::LLVMRustGetThinLTOModuleImports(data,
imported_module_callback,
&mut map as *mut _ as *mut libc::c_void);
map
}
}
fn module_name_to_str(c_str: &CStr) -> &str {
match c_str.to_str() {
Ok(s) => s,
Err(e) => {
bug!("Encountered non-utf8 LLVM module name `{}`: {}",
c_str.to_string_lossy(),
e)
}
}
}