-
Notifications
You must be signed in to change notification settings - Fork 12.8k
/
macro_rules.rs
1193 lines (1101 loc) · 46.2 KB
/
macro_rules.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use crate::base::{DummyResult, ExtCtxt, MacResult, TTMacroExpander};
use crate::base::{SyntaxExtension, SyntaxExtensionKind};
use crate::expand::{ensure_complete_parse, parse_ast_fragment, AstFragment, AstFragmentKind};
use crate::mbe;
use crate::mbe::macro_check;
use crate::mbe::macro_parser::parse_tt;
use crate::mbe::macro_parser::{Error, ErrorReported, Failure, Success};
use crate::mbe::macro_parser::{MatchedNonterminal, MatchedSeq};
use crate::mbe::transcribe::transcribe;
use rustc_ast as ast;
use rustc_ast::token::{self, NonterminalKind, NtTT, Token, TokenKind::*};
use rustc_ast::tokenstream::{DelimSpan, TokenStream};
use rustc_ast_pretty::pprust;
use rustc_attr::{self as attr, TransparencyError};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::Lrc;
use rustc_errors::{Applicability, DiagnosticBuilder};
use rustc_feature::Features;
use rustc_parse::parser::Parser;
use rustc_session::parse::ParseSess;
use rustc_session::Session;
use rustc_span::edition::Edition;
use rustc_span::hygiene::Transparency;
use rustc_span::symbol::{kw, sym, Ident, MacroRulesNormalizedIdent};
use rustc_span::Span;
use std::borrow::Cow;
use std::collections::hash_map::Entry;
use std::{mem, slice};
use tracing::debug;
crate struct ParserAnyMacro<'a> {
parser: Parser<'a>,
/// Span of the expansion site of the macro this parser is for
site_span: Span,
/// The ident of the macro we're parsing
macro_ident: Ident,
arm_span: Span,
}
crate fn annotate_err_with_kind(
err: &mut DiagnosticBuilder<'_>,
kind: AstFragmentKind,
span: Span,
) {
match kind {
AstFragmentKind::Ty => {
err.span_label(span, "this macro call doesn't expand to a type");
}
AstFragmentKind::Pat => {
err.span_label(span, "this macro call doesn't expand to a pattern");
}
_ => {}
};
}
/// Instead of e.g. `vec![a, b, c]` in a pattern context, suggest `[a, b, c]`.
fn suggest_slice_pat(e: &mut DiagnosticBuilder<'_>, site_span: Span, parser: &Parser<'_>) {
let mut suggestion = None;
if let Ok(code) = parser.sess.source_map().span_to_snippet(site_span) {
if let Some(bang) = code.find('!') {
suggestion = Some(code[bang + 1..].to_string());
}
}
if let Some(suggestion) = suggestion {
e.span_suggestion(
site_span,
"use a slice pattern here instead",
suggestion,
Applicability::MachineApplicable,
);
} else {
e.span_label(site_span, "use a slice pattern here instead");
}
e.help(
"for more information, see https://doc.rust-lang.org/edition-guide/\
rust-2018/slice-patterns.html",
);
}
fn emit_frag_parse_err(
mut e: DiagnosticBuilder<'_>,
parser: &Parser<'_>,
orig_parser: &mut Parser<'_>,
site_span: Span,
macro_ident: Ident,
arm_span: Span,
kind: AstFragmentKind,
) {
if parser.token == token::Eof && e.message().ends_with(", found `<eof>`") {
if !e.span.is_dummy() {
// early end of macro arm (#52866)
e.replace_span_with(parser.sess.source_map().next_point(parser.token.span));
}
let msg = &e.message[0];
e.message[0] = (
format!(
"macro expansion ends with an incomplete expression: {}",
msg.0.replace(", found `<eof>`", ""),
),
msg.1,
);
}
if e.span.is_dummy() {
// Get around lack of span in error (#30128)
e.replace_span_with(site_span);
if !parser.sess.source_map().is_imported(arm_span) {
e.span_label(arm_span, "in this macro arm");
}
} else if parser.sess.source_map().is_imported(parser.token.span) {
e.span_label(site_span, "in this macro invocation");
}
match kind {
AstFragmentKind::Pat if macro_ident.name == sym::vec => {
suggest_slice_pat(&mut e, site_span, parser);
}
// Try a statement if an expression is wanted but failed and suggest adding `;` to call.
AstFragmentKind::Expr => match parse_ast_fragment(orig_parser, AstFragmentKind::Stmts) {
Err(mut err) => err.cancel(),
Ok(_) => {
e.note(
"the macro call doesn't expand to an expression, but it can expand to a statement",
);
e.span_suggestion_verbose(
site_span.shrink_to_hi(),
"add `;` to interpret the expansion as a statement",
";".to_string(),
Applicability::MaybeIncorrect,
);
}
},
_ => annotate_err_with_kind(&mut e, kind, site_span),
};
e.emit();
}
impl<'a> ParserAnyMacro<'a> {
crate fn make(mut self: Box<ParserAnyMacro<'a>>, kind: AstFragmentKind) -> AstFragment {
let ParserAnyMacro { site_span, macro_ident, ref mut parser, arm_span } = *self;
let snapshot = &mut parser.clone();
let fragment = match parse_ast_fragment(parser, kind) {
Ok(f) => f,
Err(err) => {
emit_frag_parse_err(err, parser, snapshot, site_span, macro_ident, arm_span, kind);
return kind.dummy(site_span);
}
};
// We allow semicolons at the end of expressions -- e.g., the semicolon in
// `macro_rules! m { () => { panic!(); } }` isn't parsed by `.parse_expr()`,
// but `m!()` is allowed in expression positions (cf. issue #34706).
if kind == AstFragmentKind::Expr && parser.token == token::Semi {
parser.bump();
}
// Make sure we don't have any tokens left to parse so we don't silently drop anything.
let path = ast::Path::from_ident(macro_ident.with_span_pos(site_span));
ensure_complete_parse(parser, &path, kind.name(), site_span);
fragment
}
}
struct MacroRulesMacroExpander {
name: Ident,
span: Span,
transparency: Transparency,
lhses: Vec<mbe::TokenTree>,
rhses: Vec<mbe::TokenTree>,
valid: bool,
}
impl TTMacroExpander for MacroRulesMacroExpander {
fn expand<'cx>(
&self,
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
input: TokenStream,
) -> Box<dyn MacResult + 'cx> {
if !self.valid {
return DummyResult::any(sp);
}
generic_extension(
cx,
sp,
self.span,
self.name,
self.transparency,
input,
&self.lhses,
&self.rhses,
)
}
}
fn macro_rules_dummy_expander<'cx>(
_: &'cx mut ExtCtxt<'_>,
span: Span,
_: TokenStream,
) -> Box<dyn MacResult + 'cx> {
DummyResult::any(span)
}
fn trace_macros_note(cx_expansions: &mut FxHashMap<Span, Vec<String>>, sp: Span, message: String) {
let sp = sp.macro_backtrace().last().map(|trace| trace.call_site).unwrap_or(sp);
cx_expansions.entry(sp).or_default().push(message);
}
/// Given `lhses` and `rhses`, this is the new macro we create
fn generic_extension<'cx>(
cx: &'cx mut ExtCtxt<'_>,
sp: Span,
def_span: Span,
name: Ident,
transparency: Transparency,
arg: TokenStream,
lhses: &[mbe::TokenTree],
rhses: &[mbe::TokenTree],
) -> Box<dyn MacResult + 'cx> {
let sess = &cx.sess.parse_sess;
if cx.trace_macros() {
let msg = format!("expanding `{}! {{ {} }}`", name, pprust::tts_to_string(&arg));
trace_macros_note(&mut cx.expansions, sp, msg);
}
// Which arm's failure should we report? (the one furthest along)
let mut best_failure: Option<(Token, &str)> = None;
// We create a base parser that can be used for the "black box" parts.
// Every iteration needs a fresh copy of that parser. However, the parser
// is not mutated on many of the iterations, particularly when dealing with
// macros like this:
//
// macro_rules! foo {
// ("a") => (A);
// ("b") => (B);
// ("c") => (C);
// // ... etc. (maybe hundreds more)
// }
//
// as seen in the `html5ever` benchmark. We use a `Cow` so that the base
// parser is only cloned when necessary (upon mutation). Furthermore, we
// reinitialize the `Cow` with the base parser at the start of every
// iteration, so that any mutated parsers are not reused. This is all quite
// hacky, but speeds up the `html5ever` benchmark significantly. (Issue
// 68836 suggests a more comprehensive but more complex change to deal with
// this situation.)
let parser = parser_from_cx(sess, arg.clone());
for (i, lhs) in lhses.iter().enumerate() {
// try each arm's matchers
let lhs_tt = match *lhs {
mbe::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
_ => cx.span_bug(sp, "malformed macro lhs"),
};
// Take a snapshot of the state of pre-expansion gating at this point.
// This is used so that if a matcher is not `Success(..)`ful,
// then the spans which became gated when parsing the unsuccessful matcher
// are not recorded. On the first `Success(..)`ful matcher, the spans are merged.
let mut gated_spans_snapshot = mem::take(&mut *sess.gated_spans.spans.borrow_mut());
match parse_tt(&mut Cow::Borrowed(&parser), lhs_tt) {
Success(named_matches) => {
// The matcher was `Success(..)`ful.
// Merge the gated spans from parsing the matcher with the pre-existing ones.
sess.gated_spans.merge(gated_spans_snapshot);
let rhs = match rhses[i] {
// ignore delimiters
mbe::TokenTree::Delimited(_, ref delimed) => delimed.tts.clone(),
_ => cx.span_bug(sp, "malformed macro rhs"),
};
let arm_span = rhses[i].span();
let rhs_spans = rhs.iter().map(|t| t.span()).collect::<Vec<_>>();
// rhs has holes ( `$id` and `$(...)` that need filled)
let mut tts = match transcribe(cx, &named_matches, rhs, transparency) {
Ok(tts) => tts,
Err(mut err) => {
err.emit();
return DummyResult::any(arm_span);
}
};
// Replace all the tokens for the corresponding positions in the macro, to maintain
// proper positions in error reporting, while maintaining the macro_backtrace.
if rhs_spans.len() == tts.len() {
tts = tts.map_enumerated(|i, tt| {
let mut tt = tt.clone();
let mut sp = rhs_spans[i];
sp = sp.with_ctxt(tt.span().ctxt());
tt.set_span(sp);
tt
});
}
if cx.trace_macros() {
let msg = format!("to `{}`", pprust::tts_to_string(&tts));
trace_macros_note(&mut cx.expansions, sp, msg);
}
let mut p = Parser::new(sess, tts, false, None);
p.last_type_ascription = cx.current_expansion.prior_type_ascription;
// Let the context choose how to interpret the result.
// Weird, but useful for X-macros.
return Box::new(ParserAnyMacro {
parser: p,
// Pass along the original expansion site and the name of the macro
// so we can print a useful error message if the parse of the expanded
// macro leaves unparsed tokens.
site_span: sp,
macro_ident: name,
arm_span,
});
}
Failure(token, msg) => match best_failure {
Some((ref best_token, _)) if best_token.span.lo() >= token.span.lo() => {}
_ => best_failure = Some((token, msg)),
},
Error(err_sp, ref msg) => {
let span = err_sp.substitute_dummy(sp);
cx.struct_span_err(span, &msg).emit();
return DummyResult::any(span);
}
ErrorReported => return DummyResult::any(sp),
}
// The matcher was not `Success(..)`ful.
// Restore to the state before snapshotting and maybe try again.
mem::swap(&mut gated_spans_snapshot, &mut sess.gated_spans.spans.borrow_mut());
}
drop(parser);
let (token, label) = best_failure.expect("ran no matchers");
let span = token.span.substitute_dummy(sp);
let mut err = cx.struct_span_err(span, &parse_failure_msg(&token));
err.span_label(span, label);
if !def_span.is_dummy() && !cx.source_map().is_imported(def_span) {
err.span_label(cx.source_map().guess_head_span(def_span), "when calling this macro");
}
// Check whether there's a missing comma in this macro call, like `println!("{}" a);`
if let Some((arg, comma_span)) = arg.add_comma() {
for lhs in lhses {
// try each arm's matchers
let lhs_tt = match *lhs {
mbe::TokenTree::Delimited(_, ref delim) => &delim.tts[..],
_ => continue,
};
if let Success(_) =
parse_tt(&mut Cow::Borrowed(&parser_from_cx(sess, arg.clone())), lhs_tt)
{
if comma_span.is_dummy() {
err.note("you might be missing a comma");
} else {
err.span_suggestion_short(
comma_span,
"missing comma here",
", ".to_string(),
Applicability::MachineApplicable,
);
}
}
}
}
err.emit();
cx.trace_macros_diag();
DummyResult::any(sp)
}
// Note that macro-by-example's input is also matched against a token tree:
// $( $lhs:tt => $rhs:tt );+
//
// Holy self-referential!
/// Converts a macro item into a syntax extension.
pub fn compile_declarative_macro(
sess: &Session,
features: &Features,
def: &ast::Item,
edition: Edition,
) -> SyntaxExtension {
debug!("compile_declarative_macro: {:?}", def);
let mk_syn_ext = |expander| {
SyntaxExtension::new(
sess,
SyntaxExtensionKind::LegacyBang(expander),
def.span,
Vec::new(),
edition,
def.ident.name,
&def.attrs,
)
};
let diag = &sess.parse_sess.span_diagnostic;
let lhs_nm = Ident::new(sym::lhs, def.span);
let rhs_nm = Ident::new(sym::rhs, def.span);
let tt_spec = NonterminalKind::TT;
// Parse the macro_rules! invocation
let (macro_rules, body) = match &def.kind {
ast::ItemKind::MacroDef(def) => (def.macro_rules, def.body.inner_tokens()),
_ => unreachable!(),
};
// The pattern that macro_rules matches.
// The grammar for macro_rules! is:
// $( $lhs:tt => $rhs:tt );+
// ...quasiquoting this would be nice.
// These spans won't matter, anyways
let argument_gram = vec![
mbe::TokenTree::Sequence(
DelimSpan::dummy(),
Lrc::new(mbe::SequenceRepetition {
tts: vec![
mbe::TokenTree::MetaVarDecl(def.span, lhs_nm, tt_spec),
mbe::TokenTree::token(token::FatArrow, def.span),
mbe::TokenTree::MetaVarDecl(def.span, rhs_nm, tt_spec),
],
separator: Some(Token::new(
if macro_rules { token::Semi } else { token::Comma },
def.span,
)),
kleene: mbe::KleeneToken::new(mbe::KleeneOp::OneOrMore, def.span),
num_captures: 2,
}),
),
// to phase into semicolon-termination instead of semicolon-separation
mbe::TokenTree::Sequence(
DelimSpan::dummy(),
Lrc::new(mbe::SequenceRepetition {
tts: vec![mbe::TokenTree::token(
if macro_rules { token::Semi } else { token::Comma },
def.span,
)],
separator: None,
kleene: mbe::KleeneToken::new(mbe::KleeneOp::ZeroOrMore, def.span),
num_captures: 0,
}),
),
];
let parser = Parser::new(&sess.parse_sess, body, true, rustc_parse::MACRO_ARGUMENTS);
let argument_map = match parse_tt(&mut Cow::Borrowed(&parser), &argument_gram) {
Success(m) => m,
Failure(token, msg) => {
let s = parse_failure_msg(&token);
let sp = token.span.substitute_dummy(def.span);
sess.parse_sess.span_diagnostic.struct_span_err(sp, &s).span_label(sp, msg).emit();
return mk_syn_ext(Box::new(macro_rules_dummy_expander));
}
Error(sp, msg) => {
sess.parse_sess
.span_diagnostic
.struct_span_err(sp.substitute_dummy(def.span), &msg)
.emit();
return mk_syn_ext(Box::new(macro_rules_dummy_expander));
}
ErrorReported => {
return mk_syn_ext(Box::new(macro_rules_dummy_expander));
}
};
let mut valid = true;
// Extract the arguments:
let lhses = match argument_map[&MacroRulesNormalizedIdent::new(lhs_nm)] {
MatchedSeq(ref s) => s
.iter()
.map(|m| {
if let MatchedNonterminal(ref nt) = *m {
if let NtTT(ref tt) = **nt {
let tt =
mbe::quoted::parse(tt.clone().into(), true, &sess.parse_sess, def.id)
.pop()
.unwrap();
valid &= check_lhs_nt_follows(&sess.parse_sess, features, &def.attrs, &tt);
return tt;
}
}
sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
})
.collect::<Vec<mbe::TokenTree>>(),
_ => sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs"),
};
let rhses = match argument_map[&MacroRulesNormalizedIdent::new(rhs_nm)] {
MatchedSeq(ref s) => s
.iter()
.map(|m| {
if let MatchedNonterminal(ref nt) = *m {
if let NtTT(ref tt) = **nt {
return mbe::quoted::parse(
tt.clone().into(),
false,
&sess.parse_sess,
def.id,
)
.pop()
.unwrap();
}
}
sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured lhs")
})
.collect::<Vec<mbe::TokenTree>>(),
_ => sess.parse_sess.span_diagnostic.span_bug(def.span, "wrong-structured rhs"),
};
for rhs in &rhses {
valid &= check_rhs(&sess.parse_sess, rhs);
}
// don't abort iteration early, so that errors for multiple lhses can be reported
for lhs in &lhses {
valid &= check_lhs_no_empty_seq(&sess.parse_sess, slice::from_ref(lhs));
}
valid &= macro_check::check_meta_variables(&sess.parse_sess, def.id, def.span, &lhses, &rhses);
let (transparency, transparency_error) = attr::find_transparency(sess, &def.attrs, macro_rules);
match transparency_error {
Some(TransparencyError::UnknownTransparency(value, span)) => {
diag.span_err(span, &format!("unknown macro transparency: `{}`", value))
}
Some(TransparencyError::MultipleTransparencyAttrs(old_span, new_span)) => {
diag.span_err(vec![old_span, new_span], "multiple macro transparency attributes")
}
None => {}
}
mk_syn_ext(Box::new(MacroRulesMacroExpander {
name: def.ident,
span: def.span,
transparency,
lhses,
rhses,
valid,
}))
}
fn check_lhs_nt_follows(
sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
lhs: &mbe::TokenTree,
) -> bool {
// lhs is going to be like TokenTree::Delimited(...), where the
// entire lhs is those tts. Or, it can be a "bare sequence", not wrapped in parens.
if let mbe::TokenTree::Delimited(_, ref tts) = *lhs {
check_matcher(sess, features, attrs, &tts.tts)
} else {
let msg = "invalid macro matcher; matchers must be contained in balanced delimiters";
sess.span_diagnostic.span_err(lhs.span(), msg);
false
}
// we don't abort on errors on rejection, the driver will do that for us
// after parsing/expansion. we can report every error in every macro this way.
}
/// Checks that the lhs contains no repetition which could match an empty token
/// tree, because then the matcher would hang indefinitely.
fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[mbe::TokenTree]) -> bool {
use mbe::TokenTree;
for tt in tts {
match *tt {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => (),
TokenTree::Delimited(_, ref del) => {
if !check_lhs_no_empty_seq(sess, &del.tts) {
return false;
}
}
TokenTree::Sequence(span, ref seq) => {
if seq.separator.is_none()
&& seq.tts.iter().all(|seq_tt| match *seq_tt {
TokenTree::MetaVarDecl(_, _, NonterminalKind::Vis) => true,
TokenTree::Sequence(_, ref sub_seq) => {
sub_seq.kleene.op == mbe::KleeneOp::ZeroOrMore
|| sub_seq.kleene.op == mbe::KleeneOp::ZeroOrOne
}
_ => false,
})
{
let sp = span.entire();
sess.span_diagnostic.span_err(sp, "repetition matches empty token tree");
return false;
}
if !check_lhs_no_empty_seq(sess, &seq.tts) {
return false;
}
}
}
}
true
}
fn check_rhs(sess: &ParseSess, rhs: &mbe::TokenTree) -> bool {
match *rhs {
mbe::TokenTree::Delimited(..) => return true,
_ => sess.span_diagnostic.span_err(rhs.span(), "macro rhs must be delimited"),
}
false
}
fn check_matcher(
sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
matcher: &[mbe::TokenTree],
) -> bool {
let first_sets = FirstSets::new(matcher);
let empty_suffix = TokenSet::empty();
let err = sess.span_diagnostic.err_count();
check_matcher_core(sess, features, attrs, &first_sets, matcher, &empty_suffix);
err == sess.span_diagnostic.err_count()
}
// `The FirstSets` for a matcher is a mapping from subsequences in the
// matcher to the FIRST set for that subsequence.
//
// This mapping is partially precomputed via a backwards scan over the
// token trees of the matcher, which provides a mapping from each
// repetition sequence to its *first* set.
//
// (Hypothetically, sequences should be uniquely identifiable via their
// spans, though perhaps that is false, e.g., for macro-generated macros
// that do not try to inject artificial span information. My plan is
// to try to catch such cases ahead of time and not include them in
// the precomputed mapping.)
struct FirstSets {
// this maps each TokenTree::Sequence `$(tt ...) SEP OP` that is uniquely identified by its
// span in the original matcher to the First set for the inner sequence `tt ...`.
//
// If two sequences have the same span in a matcher, then map that
// span to None (invalidating the mapping here and forcing the code to
// use a slow path).
first: FxHashMap<Span, Option<TokenSet>>,
}
impl FirstSets {
fn new(tts: &[mbe::TokenTree]) -> FirstSets {
use mbe::TokenTree;
let mut sets = FirstSets { first: FxHashMap::default() };
build_recur(&mut sets, tts);
return sets;
// walks backward over `tts`, returning the FIRST for `tts`
// and updating `sets` at the same time for all sequence
// substructure we find within `tts`.
fn build_recur(sets: &mut FirstSets, tts: &[TokenTree]) -> TokenSet {
let mut first = TokenSet::empty();
for tt in tts.iter().rev() {
match *tt {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
first.replace_with(tt.clone());
}
TokenTree::Delimited(span, ref delimited) => {
build_recur(sets, &delimited.tts[..]);
first.replace_with(delimited.open_tt(span));
}
TokenTree::Sequence(sp, ref seq_rep) => {
let subfirst = build_recur(sets, &seq_rep.tts[..]);
match sets.first.entry(sp.entire()) {
Entry::Vacant(vac) => {
vac.insert(Some(subfirst.clone()));
}
Entry::Occupied(mut occ) => {
// if there is already an entry, then a span must have collided.
// This should not happen with typical macro_rules macros,
// but syntax extensions need not maintain distinct spans,
// so distinct syntax trees can be assigned the same span.
// In such a case, the map cannot be trusted; so mark this
// entry as unusable.
occ.insert(None);
}
}
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TokenTree::Token(sep.clone()));
}
// Reverse scan: Sequence comes before `first`.
if subfirst.maybe_empty
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
{
// If sequence is potentially empty, then
// union them (preserving first emptiness).
first.add_all(&TokenSet { maybe_empty: true, ..subfirst });
} else {
// Otherwise, sequence guaranteed
// non-empty; replace first.
first = subfirst;
}
}
}
}
first
}
}
// walks forward over `tts` until all potential FIRST tokens are
// identified.
fn first(&self, tts: &[mbe::TokenTree]) -> TokenSet {
use mbe::TokenTree;
let mut first = TokenSet::empty();
for tt in tts.iter() {
assert!(first.maybe_empty);
match *tt {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
first.add_one(tt.clone());
return first;
}
TokenTree::Delimited(span, ref delimited) => {
first.add_one(delimited.open_tt(span));
return first;
}
TokenTree::Sequence(sp, ref seq_rep) => {
let subfirst_owned;
let subfirst = match self.first.get(&sp.entire()) {
Some(&Some(ref subfirst)) => subfirst,
Some(&None) => {
subfirst_owned = self.first(&seq_rep.tts[..]);
&subfirst_owned
}
None => {
panic!("We missed a sequence during FirstSets construction");
}
};
// If the sequence contents can be empty, then the first
// token could be the separator token itself.
if let (Some(sep), true) = (&seq_rep.separator, subfirst.maybe_empty) {
first.add_one_maybe(TokenTree::Token(sep.clone()));
}
assert!(first.maybe_empty);
first.add_all(subfirst);
if subfirst.maybe_empty
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == mbe::KleeneOp::ZeroOrOne
{
// Continue scanning for more first
// tokens, but also make sure we
// restore empty-tracking state.
first.maybe_empty = true;
continue;
} else {
return first;
}
}
}
}
// we only exit the loop if `tts` was empty or if every
// element of `tts` matches the empty sequence.
assert!(first.maybe_empty);
first
}
}
// A set of `mbe::TokenTree`s, which may include `TokenTree::Match`s
// (for macro-by-example syntactic variables). It also carries the
// `maybe_empty` flag; that is true if and only if the matcher can
// match an empty token sequence.
//
// The First set is computed on submatchers like `$($a:expr b),* $(c)* d`,
// which has corresponding FIRST = {$a:expr, c, d}.
// Likewise, `$($a:expr b),* $(c)+ d` has FIRST = {$a:expr, c}.
//
// (Notably, we must allow for *-op to occur zero times.)
#[derive(Clone, Debug)]
struct TokenSet {
tokens: Vec<mbe::TokenTree>,
maybe_empty: bool,
}
impl TokenSet {
// Returns a set for the empty sequence.
fn empty() -> Self {
TokenSet { tokens: Vec::new(), maybe_empty: true }
}
// Returns the set `{ tok }` for the single-token (and thus
// non-empty) sequence [tok].
fn singleton(tok: mbe::TokenTree) -> Self {
TokenSet { tokens: vec![tok], maybe_empty: false }
}
// Changes self to be the set `{ tok }`.
// Since `tok` is always present, marks self as non-empty.
fn replace_with(&mut self, tok: mbe::TokenTree) {
self.tokens.clear();
self.tokens.push(tok);
self.maybe_empty = false;
}
// Changes self to be the empty set `{}`; meant for use when
// the particular token does not matter, but we want to
// record that it occurs.
fn replace_with_irrelevant(&mut self) {
self.tokens.clear();
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`, marking sequence as non-empy.
fn add_one(&mut self, tok: mbe::TokenTree) {
if !self.tokens.contains(&tok) {
self.tokens.push(tok);
}
self.maybe_empty = false;
}
// Adds `tok` to the set for `self`. (Leaves `maybe_empty` flag alone.)
fn add_one_maybe(&mut self, tok: mbe::TokenTree) {
if !self.tokens.contains(&tok) {
self.tokens.push(tok);
}
}
// Adds all elements of `other` to this.
//
// (Since this is a set, we filter out duplicates.)
//
// If `other` is potentially empty, then preserves the previous
// setting of the empty flag of `self`. If `other` is guaranteed
// non-empty, then `self` is marked non-empty.
fn add_all(&mut self, other: &Self) {
for tok in &other.tokens {
if !self.tokens.contains(tok) {
self.tokens.push(tok.clone());
}
}
if !other.maybe_empty {
self.maybe_empty = false;
}
}
}
// Checks that `matcher` is internally consistent and that it
// can legally be followed by a token `N`, for all `N` in `follow`.
// (If `follow` is empty, then it imposes no constraint on
// the `matcher`.)
//
// Returns the set of NT tokens that could possibly come last in
// `matcher`. (If `matcher` matches the empty sequence, then
// `maybe_empty` will be set to true.)
//
// Requires that `first_sets` is pre-computed for `matcher`;
// see `FirstSets::new`.
fn check_matcher_core(
sess: &ParseSess,
features: &Features,
attrs: &[ast::Attribute],
first_sets: &FirstSets,
matcher: &[mbe::TokenTree],
follow: &TokenSet,
) -> TokenSet {
use mbe::TokenTree;
let mut last = TokenSet::empty();
// 2. For each token and suffix [T, SUFFIX] in M:
// ensure that T can be followed by SUFFIX, and if SUFFIX may be empty,
// then ensure T can also be followed by any element of FOLLOW.
'each_token: for i in 0..matcher.len() {
let token = &matcher[i];
let suffix = &matcher[i + 1..];
let build_suffix_first = || {
let mut s = first_sets.first(suffix);
if s.maybe_empty {
s.add_all(follow);
}
s
};
// (we build `suffix_first` on demand below; you can tell
// which cases are supposed to fall through by looking for the
// initialization of this variable.)
let suffix_first;
// First, update `last` so that it corresponds to the set
// of NT tokens that might end the sequence `... token`.
match *token {
TokenTree::Token(..) | TokenTree::MetaVar(..) | TokenTree::MetaVarDecl(..) => {
if token_can_be_followed_by_any(token) {
// don't need to track tokens that work with any,
last.replace_with_irrelevant();
// ... and don't need to check tokens that can be
// followed by anything against SUFFIX.
continue 'each_token;
} else {
last.replace_with(token.clone());
suffix_first = build_suffix_first();
}
}
TokenTree::Delimited(span, ref d) => {
let my_suffix = TokenSet::singleton(d.close_tt(span));
check_matcher_core(sess, features, attrs, first_sets, &d.tts, &my_suffix);
// don't track non NT tokens
last.replace_with_irrelevant();
// also, we don't need to check delimited sequences
// against SUFFIX
continue 'each_token;
}
TokenTree::Sequence(_, ref seq_rep) => {
suffix_first = build_suffix_first();
// The trick here: when we check the interior, we want
// to include the separator (if any) as a potential
// (but not guaranteed) element of FOLLOW. So in that
// case, we make a temp copy of suffix and stuff
// delimiter in there.
//
// FIXME: Should I first scan suffix_first to see if
// delimiter is already in it before I go through the
// work of cloning it? But then again, this way I may
// get a "tighter" span?
let mut new;
let my_suffix = if let Some(sep) = &seq_rep.separator {
new = suffix_first.clone();
new.add_one_maybe(TokenTree::Token(sep.clone()));
&new
} else {
&suffix_first
};
// At this point, `suffix_first` is built, and
// `my_suffix` is some TokenSet that we can use
// for checking the interior of `seq_rep`.
let next =
check_matcher_core(sess, features, attrs, first_sets, &seq_rep.tts, my_suffix);
if next.maybe_empty {
last.add_all(&next);
} else {
last = next;
}
// the recursive call to check_matcher_core already ran the 'each_last
// check below, so we can just keep going forward here.
continue 'each_token;
}
}
// (`suffix_first` guaranteed initialized once reaching here.)
// Now `last` holds the complete set of NT tokens that could
// end the sequence before SUFFIX. Check that every one works with `suffix`.
for token in &last.tokens {
if let TokenTree::MetaVarDecl(_, name, kind) = *token {
for next_token in &suffix_first.tokens {
match is_in_follow(next_token, kind) {
IsInFollow::Yes => {}
IsInFollow::No(possible) => {
let may_be = if last.tokens.len() == 1 && suffix_first.tokens.len() == 1
{
"is"
} else {
"may be"
};
let sp = next_token.span();
let mut err = sess.span_diagnostic.struct_span_err(
sp,
&format!(
"`${name}:{frag}` {may_be} followed by `{next}`, which \
is not allowed for `{frag}` fragments",
name = name,
frag = kind,
next = quoted_tt_to_string(next_token),
may_be = may_be
),
);
err.span_label(sp, format!("not allowed after `{}` fragments", kind));
let msg = "allowed there are: ";
match possible {
&[] => {}
&[t] => {
err.note(&format!(
"only {} is allowed after `{}` fragments",
t, kind,
));
}
ts => {
err.note(&format!(
"{}{} or {}",