-
Notifications
You must be signed in to change notification settings - Fork 636
/
mod.rs
1109 lines (1034 loc) · 35.6 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Streams
//!
//! This module contains a number of functions for working with `Stream`s,
//! including the `StreamExt` trait which adds methods to `Stream` types.
use core::marker::Unpin;
use core::pin::Pin;
use either::Either;
use futures_core::future::Future;
use futures_core::stream::{FusedStream, Stream};
use futures_core::task::{LocalWaker, Poll};
use futures_sink::Sink;
mod iter;
pub use self::iter::{iter, Iter};
mod repeat;
pub use self::repeat::{repeat, Repeat};
mod chain;
pub use self::chain::Chain;
mod collect;
pub use self::collect::Collect;
mod concat;
pub use self::concat::Concat;
mod empty;
pub use self::empty::{empty, Empty};
mod filter;
pub use self::filter::Filter;
mod filter_map;
pub use self::filter_map::FilterMap;
mod flatten;
pub use self::flatten::Flatten;
mod fold;
pub use self::fold::Fold;
mod forward;
pub use self::forward::Forward;
mod for_each;
pub use self::for_each::ForEach;
mod fuse;
pub use self::fuse::Fuse;
mod into_future;
pub use self::into_future::StreamFuture;
mod inspect;
pub use self::inspect::Inspect;
mod map;
pub use self::map::Map;
mod next;
pub use self::next::Next;
mod select_next_some;
pub use self::select_next_some::SelectNextSome;
mod once;
pub use self::once::{once, Once};
mod peek;
pub use self::peek::Peekable;
mod poll_fn;
pub use self::poll_fn::{poll_fn, PollFn};
mod select;
pub use self::select::Select;
mod skip;
pub use self::skip::Skip;
mod skip_while;
pub use self::skip_while::SkipWhile;
mod take;
pub use self::take::Take;
mod take_while;
pub use self::take_while::TakeWhile;
mod then;
pub use self::then::Then;
mod unfold;
pub use self::unfold::{unfold, Unfold};
mod zip;
pub use self::zip::Zip;
#[cfg(feature = "std")]
use std;
#[cfg(feature = "std")]
mod buffer_unordered;
#[cfg(feature = "std")]
pub use self::buffer_unordered::BufferUnordered;
#[cfg(feature = "std")]
mod buffered;
#[cfg(feature = "std")]
pub use self::buffered::Buffered;
#[cfg(feature = "std")]
mod catch_unwind;
#[cfg(feature = "std")]
pub use self::catch_unwind::CatchUnwind;
#[cfg(feature = "std")]
mod chunks;
#[cfg(feature = "std")]
pub use self::chunks::Chunks;
#[cfg(feature = "std")]
mod for_each_concurrent;
#[cfg(feature = "std")]
pub use self::for_each_concurrent::ForEachConcurrent;
#[cfg(feature = "std")]
mod futures_ordered;
#[cfg(feature = "std")]
pub use self::futures_ordered::{futures_ordered, FuturesOrdered};
#[cfg(feature = "std")]
mod futures_unordered;
#[cfg(feature = "std")]
pub use self::futures_unordered::{futures_unordered, FuturesUnordered};
#[cfg(feature = "std")]
mod split;
#[cfg(feature = "std")]
pub use self::split::{SplitStream, SplitSink, ReuniteError};
#[cfg(feature = "std")]
mod select_all;
#[cfg(feature = "std")]
pub use self::select_all::{select_all, SelectAll};
impl<T: ?Sized> StreamExt for T where T: Stream {}
/// An extension trait for `Stream`s that provides a variety of convenient
/// combinator functions.
pub trait StreamExt: Stream {
/// Creates a future that resolves to the next item in the stream.
///
/// Note that because `next` doesn't take ownership over the stream,
/// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a
/// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can
/// be done by boxing the stream using [`Box::pinned`] or
/// pinning it to the stack using the `pin_mut!` macro from the `pin_utils`
/// crate.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let mut stream = stream::iter(1..=3);
///
/// assert_eq!(block_on(stream.next()), Some(1));
/// assert_eq!(block_on(stream.next()), Some(2));
/// assert_eq!(block_on(stream.next()), Some(3));
/// assert_eq!(block_on(stream.next()), None);
/// ```
fn next(&mut self) -> Next<'_, Self>
where Self: Sized + Unpin,
{
Next::new(self)
}
/// Converts this stream into a future of `(next_item, tail_of_stream)`.
/// If the stream terminates, then the next item is [`None`].
///
/// The returned future can be used to compose streams and futures together
/// by placing everything into the "world of futures".
///
/// Note that because `into_future` moves the stream, the [`Stream`] type
/// must be [`Unpin`]. If you want to use `into_future` with a
/// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can
/// be done by boxing the stream using [`Box::pinned`] or
/// pinning it to the stack using the `pin_mut!` macro from the `pin_utils`
/// crate.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=3);
///
/// let (item, stream) = block_on(stream.into_future());
/// assert_eq!(Some(1), item);
///
/// let (item, stream) = block_on(stream.into_future());
/// assert_eq!(Some(2), item);
/// ```
fn into_future(self) -> StreamFuture<Self>
where Self: Sized + Unpin,
{
StreamFuture::new(self)
}
/// Maps this stream's items to a different type, returning a new stream of
/// the resulting type.
///
/// The provided closure is executed over all elements of this stream as
/// they are made available. It is executed inline with calls to
/// [`poll_next`](Stream::poll_next).
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to the existing `map` methods in the
/// standard library.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=3);
/// let stream = stream.map(|x| x + 3);
///
/// assert_eq!(vec![4, 5, 6], block_on(stream.collect::<Vec<_>>()));
/// ```
fn map<T, F>(self, f: F) -> Map<Self, F>
where F: FnMut(Self::Item) -> T,
Self: Sized
{
Map::new(self, f)
}
/// Filters the values produced by this stream according to the provided
/// asynchronous predicate.
///
/// As values of this stream are made available, the provided predicate `f`
/// will be run against them. If the predicate returns a `Future` which
/// resolves to `true`, then the stream will yield the value, but if the
/// predicate returns a `Future` which resolves to `false`, then the value
/// will be discarded and the next value will be produced.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to the existing `filter` methods in the
/// standard library.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=10);
/// let evens = stream.filter(|x| future::ready(x % 2 == 0));
///
/// assert_eq!(vec![2, 4, 6, 8, 10], block_on(evens.collect::<Vec<_>>()));
/// ```
fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut,
Fut: Future<Output = bool>,
Self: Sized,
{
Filter::new(self, f)
}
/// Filters the values produced by this stream while simultaneously mapping
/// them to a different type according to the provided asynchronous closure.
///
/// As values of this stream are made available, the provided function will
/// be run on them. If the future returned by the predicate `f` resolves to
/// [`Some(item)`](Some) then the stream will yield the value `item`, but if
/// it resolves to [`None`] then the next value will be produced.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to the existing `filter_map` methods in
/// the standard library.
///
/// # Examples
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=10);
/// let evens = stream.filter_map(|x| {
/// let ret = if x % 2 == 0 { Some(x + 1) } else { None };
/// future::ready(ret)
/// });
///
/// assert_eq!(vec![3, 5, 7, 9, 11], block_on(evens.collect::<Vec<_>>()));
/// ```
fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut,
Fut: Future<Output = Option<T>>,
Self: Sized,
{
FilterMap::new(self, f)
}
/// Computes from this stream's items new items of a different type using
/// an asynchronous closure.
///
/// The provided closure `f` will be called with an `Item` once a value is
/// ready, it returns a future which will then be run to completion
/// to produce the next value on this stream.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=3);
/// let stream = stream.then(|x| future::ready(x + 3));
///
/// assert_eq!(vec![4, 5, 6], block_on(stream.collect::<Vec<_>>()));
/// ```
fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut,
Fut: Future,
Self: Sized
{
Then::new(self, f)
}
/// Collect all of the values of this stream into a vector, returning a
/// future representing the result of that computation.
///
/// The returned future will be resolved when the stream terminates.
///
/// # Examples
///
/// ```
/// use futures::channel::mpsc;
/// use futures::executor::block_on;
/// use futures::stream::StreamExt;
/// use std::thread;
///
/// let (tx, rx) = mpsc::unbounded();
///
/// thread::spawn(move || {
/// for i in (1..=5) {
/// tx.unbounded_send(i).unwrap();
/// }
/// });
///
/// let output = block_on(rx.collect::<Vec<i32>>());
/// assert_eq!(output, vec![1, 2, 3, 4, 5]);
/// ```
fn collect<C: Default + Extend<Self::Item>>(self) -> Collect<Self, C>
where Self: Sized
{
Collect::new(self)
}
/// Concatenate all items of a stream into a single extendable
/// destination, returning a future representing the end result.
///
/// This combinator will extend the first item with the contents
/// of all the subsequent results of the stream. If the stream is
/// empty, the default value will be returned.
///
/// Works with all collections that implement the
/// [`Extend`](std::iter::Extend) trait.
///
/// # Examples
///
/// ```
/// use futures::channel::mpsc;
/// use futures::executor::block_on;
/// use futures::stream::StreamExt;
/// use std::thread;
///
/// let (tx, rx) = mpsc::unbounded();
///
/// thread::spawn(move || {
/// for i in (0..3).rev() {
/// let n = i * 3;
/// tx.unbounded_send(vec![n + 1, n + 2, n + 3]).unwrap();
/// }
/// });
///
/// let result = block_on(rx.concat());
///
/// assert_eq!(result, vec![7, 8, 9, 4, 5, 6, 1, 2, 3]);
/// ```
fn concat(self) -> Concat<Self>
where Self: Sized,
Self::Item: Extend<<<Self as Stream>::Item as IntoIterator>::Item> +
IntoIterator + Default,
{
Concat::new(self)
}
/// Execute an accumulating asynchronous computation over a stream,
/// collecting all the values into one final result.
///
/// This combinator will accumulate all values returned by this stream
/// according to the closure provided. The initial state is also provided to
/// this method and then is returned again by each execution of the closure.
/// Once the entire stream has been exhausted the returned future will
/// resolve to this value.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let number_stream = stream::iter(0..6);
/// let sum = number_stream.fold(0, |acc, x| future::ready(acc + x));
/// assert_eq!(block_on(sum), 15);
/// ```
fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F>
where F: FnMut(T, Self::Item) -> Fut,
Fut: Future<Output = T>,
Self: Sized
{
Fold::new(self, f, init)
}
/// Flattens a stream of streams into just one continuous stream.
///
/// # Examples
///
/// ```
/// use futures::channel::mpsc;
/// use futures::executor::block_on;
/// use futures::stream::StreamExt;
/// use std::thread;
///
/// let (tx1, rx1) = mpsc::unbounded();
/// let (tx2, rx2) = mpsc::unbounded();
/// let (tx3, rx3) = mpsc::unbounded();
///
/// thread::spawn(move || {
/// tx1.unbounded_send(1).unwrap();
/// tx1.unbounded_send(2).unwrap();
/// });
/// thread::spawn(move || {
/// tx2.unbounded_send(3).unwrap();
/// tx2.unbounded_send(4).unwrap();
/// });
/// thread::spawn(move || {
/// tx3.unbounded_send(rx1).unwrap();
/// tx3.unbounded_send(rx2).unwrap();
/// });
///
/// let output = block_on(rx3.flatten().collect::<Vec<i32>>());
/// assert_eq!(output, vec![1, 2, 3, 4]);
/// ```
fn flatten(self) -> Flatten<Self>
where Self::Item: Stream,
Self: Sized
{
Flatten::new(self)
}
/// Skip elements on this stream while the provided asynchronous predicate
/// resolves to `true`.
///
/// This function, like `Iterator::skip_while`, will skip elements on the
/// stream until the predicate `f` resolves to `false`. Once one element
/// returns false all future elements will be returned from the underlying
/// stream.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=10);
///
/// let stream = stream.skip_while(|x| future::ready(*x <= 5));
///
/// assert_eq!(vec![6, 7, 8, 9, 10], block_on(stream.collect::<Vec<_>>()));
/// ```
fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut,
Fut: Future<Output = bool>,
Self: Sized
{
SkipWhile::new(self, f)
}
/// Take elements from this stream while the provided asynchronous predicate
/// resolves to `true`.
///
/// This function, like `Iterator::take_while`, will take elements from the
/// stream until the predicate `f` resolves to `false`. Once one element
/// returns false it will always return that the stream is done.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=10);
///
/// let stream = stream.take_while(|x| future::ready(*x <= 5));
///
/// assert_eq!(vec![1, 2, 3, 4, 5], block_on(stream.collect::<Vec<_>>()));
/// ```
fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut,
Fut: Future<Output = bool>,
Self: Sized
{
TakeWhile::new(self, f)
}
/// Runs this stream to completion, executing the provided asynchronous
/// closure for each element on the stream.
///
/// The closure provided will be called for each item this stream produces,
/// yielding a future. That future will then be executed to completion
/// before moving on to the next item.
///
/// The returned value is a `Future` where the `Output` type is `()`; it is
/// executed entirely for its side effects.
///
/// To process each item in the stream and produce another stream instead
/// of a single future, use `then` instead.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let mut x = 0;
///
/// {
/// let fut = stream::repeat(1).take(3).for_each(|item| {
/// x += item;
/// future::ready(())
/// });
/// block_on(fut);
/// }
///
/// assert_eq!(x, 3);
/// ```
fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut,
Fut: Future<Output = ()>,
Self: Sized
{
ForEach::new(self, f)
}
/// Runs this stream to completion, executing the provided asynchronous
/// closure for each element on the stream concurrently as elements become
/// available.
///
/// This is similar to [`StreamExt::for_each`], but the futures
/// produced by the closure are run concurrently (but not in parallel--
/// this combinator does not introduce any threads).
///
/// The closure provided will be called for each item this stream produces,
/// yielding a future. That future will then be executed to completion
/// concurrently with the other futures produced by the closure.
///
/// The first argument is an optional limit on the number of concurrent
/// futures. If this limit is not `None`, no more than `limit` futures
/// will be run concurrently. The `limit` argument is of type
/// `Into<Option<usize>>`, and so can be provided as either `None`,
/// `Some(10)`, or just `10`. Note: a limit of zero is interpreted as
/// no limit at all, and will have the same result as passing in `None`.
///
/// This method is only available when the `std` feature of this
/// library is activated, and it is activated by default.
///
/// # Examples
///
/// ```
/// #![feature(async_await, await_macro)]
/// # futures::executor::block_on(async {
/// use futures::channel::oneshot;
/// use futures::stream::{self, StreamExt};
///
/// let (tx1, rx1) = oneshot::channel();
/// let (tx2, rx2) = oneshot::channel();
/// let (tx3, rx3) = oneshot::channel();
///
/// let fut = stream::iter(vec![rx1, rx2, rx3]).for_each_concurrent(
/// /* limit */ 2,
/// async move |rx| {
/// await!(rx).unwrap();
/// }
/// );
/// tx1.send(()).unwrap();
/// tx2.send(()).unwrap();
/// tx3.send(()).unwrap();
/// await!(fut);
/// # })
/// ```
#[cfg(feature = "std")]
fn for_each_concurrent<Fut, F>(
self,
limit: impl Into<Option<usize>>,
f: F,
) -> ForEachConcurrent<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut,
Fut: Future<Output = ()>,
Self: Sized,
{
ForEachConcurrent::new(self, limit.into(), f)
}
/// Creates a new stream of at most `n` items of the underlying stream.
///
/// Once `n` items have been yielded from this stream then it will always
/// return that the stream is done.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=10).take(3);
///
/// assert_eq!(vec![1, 2, 3], block_on(stream.collect::<Vec<_>>()));
/// ```
fn take(self, n: u64) -> Take<Self>
where Self: Sized
{
Take::new(self, n)
}
/// Creates a new stream which skips `n` items of the underlying stream.
///
/// Once `n` items have been skipped from this stream then it will always
/// return the remaining items on this stream.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(1..=10).skip(5);
///
/// assert_eq!(vec![6, 7, 8, 9, 10], block_on(stream.collect::<Vec<_>>()));
/// ```
fn skip(self, n: u64) -> Skip<Self>
where Self: Sized
{
Skip::new(self, n)
}
/// Fuse a stream such that [`poll_next`](Stream::poll_next) will never
/// again be called once it has finished. This method can be used t turn
/// any `Stream` into a `FusedStream`.
///
/// Normally, once a stream has returned [`None`] from
/// [`poll_next`](Stream::poll_next) any further calls could exhibit bad
/// behavior such as block forever, panic, never return, etc. If it is known
/// that [`poll_next`](Stream::poll_next) may be called after stream
/// has already finished, then this method can be used to ensure that it has
/// defined semantics.
///
/// The [`poll_next`](Stream::poll_next) method of a `fuse`d stream
/// is guaranteed to return [`None`] after the underlying stream has
/// finished.
///
/// # Examples
///
/// ```
/// #![feature(futures_api)]
/// use futures::executor::block_on_stream;
/// use futures::stream::{self, StreamExt};
/// use futures::task::Poll;
///
/// let mut x = 0;
/// let stream = stream::poll_fn(|_| {
/// x += 1;
/// match x {
/// 0..=2 => Poll::Ready(Some(x)),
/// 3 => Poll::Ready(None),
/// _ => panic!("should not happen")
/// }
/// }).fuse();
///
/// let mut iter = block_on_stream(stream);
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(None, iter.next());
/// assert_eq!(None, iter.next());
/// // ...
/// ```
fn fuse(self) -> Fuse<Self>
where Self: Sized
{
Fuse::new(self)
}
/// Borrows a stream, rather than consuming it.
///
/// This is useful to allow applying stream adaptors while still retaining
/// ownership of the original stream.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::future;
/// use futures::stream::{self, StreamExt};
///
/// let mut stream = stream::iter(1..5);
///
/// let sum = block_on(stream.by_ref()
/// .take(2)
/// .fold(0, |a, b| future::ready(a + b)));
/// assert_eq!(sum, 3);
///
/// // You can use the stream again
/// let sum = block_on(stream.take(2).fold(0, |a, b| future::ready(a + b)));
/// assert_eq!(sum, 7);
/// ```
fn by_ref(&mut self) -> &mut Self
where Self: Sized
{
self
}
/// Catches unwinding panics while polling the stream.
///
/// Caught panic (if any) will be the last element of the resulting stream.
///
/// In general, panics within a stream can propagate all the way out to the
/// task level. This combinator makes it possible to halt unwinding within
/// the stream itself. It's most commonly used within task executors. This
/// method should not be used for error handling.
///
/// Note that this method requires the `UnwindSafe` bound from the standard
/// library. This isn't always applied automatically, and the standard
/// library provides an `AssertUnwindSafe` wrapper type to apply it
/// after-the fact. To assist using this method, the [`Stream`] trait is
/// also implemented for `AssertUnwindSafe<St>` where `St` implements
/// [`Stream`].
///
/// This method is only available when the `std` feature of this
/// library is activated, and it is activated by default.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream = stream::iter(vec![Some(10), None, Some(11)]);
/// // Panic on second element
/// let stream_panicking = stream.map(|o| o.unwrap());
/// // Collect all the results
/// let stream = stream_panicking.catch_unwind();
///
/// let results: Vec<Result<i32, _>> = block_on(stream.collect());
/// match results[0] {
/// Ok(10) => {}
/// _ => panic!("unexpected result!"),
/// }
/// assert!(results[1].is_err());
/// assert_eq!(results.len(), 2);
/// ```
#[cfg(feature = "std")]
fn catch_unwind(self) -> CatchUnwind<Self>
where Self: Sized + std::panic::UnwindSafe
{
CatchUnwind::new(self)
}
/// Wrap the stream in a Box, pinning it.
#[cfg(feature = "std")]
fn boxed(self) -> Pin<Box<Self>>
where Self: Sized
{
Box::pin(self)
}
/// An adaptor for creating a buffered list of pending futures.
///
/// If this stream's item can be converted into a future, then this adaptor
/// will buffer up to at most `n` futures and then return the outputs in the
/// same order as the underlying stream. No more than `n` futures will be
/// buffered at any point in time, and less than `n` may also be buffered
/// depending on the state of each future.
///
/// The returned stream will be a stream of each future's output.
///
/// This method is only available when the `std` feature of this
/// library is activated, and it is activated by default.
#[cfg(feature = "std")]
fn buffered(self, n: usize) -> Buffered<Self>
where Self::Item: Future,
Self: Sized
{
Buffered::new(self, n)
}
/// An adaptor for creating a buffered list of pending futures (unordered).
///
/// If this stream's item can be converted into a future, then this adaptor
/// will buffer up to `n` futures and then return the outputs in the order
/// in which they complete. No more than `n` futures will be buffered at
/// any point in time, and less than `n` may also be buffered depending on
/// the state of each future.
///
/// The returned stream will be a stream of each future's output.
///
/// This method is only available when the `std` feature of this
/// library is activated, and it is activated by default.
///
/// # Examples
///
/// ```
/// #![feature(async_await, await_macro)]
/// # futures::executor::block_on(async {
/// use futures::channel::oneshot;
/// use futures::stream::{self, StreamExt};
///
/// let (send_one, recv_one) = oneshot::channel();
/// let (send_two, recv_two) = oneshot::channel();
///
/// let stream_of_futures = stream::iter(vec![recv_one, recv_two]);
/// let mut buffered = stream_of_futures.buffer_unordered(10);
///
/// send_two.send(2i32);
/// assert_eq!(await!(buffered.next()), Some(Ok(2i32)));
///
/// send_one.send(1i32);
/// assert_eq!(await!(buffered.next()), Some(Ok(1i32)));
///
/// assert_eq!(await!(buffered.next()), None);
/// # })
/// ```
#[cfg(feature = "std")]
fn buffer_unordered(self, n: usize) -> BufferUnordered<Self>
where Self::Item: Future,
Self: Sized
{
BufferUnordered::new(self, n)
}
/// An adapter for zipping two streams together.
///
/// The zipped stream waits for both streams to produce an item, and then
/// returns that pair. If either stream ends then the zipped stream will
/// also end.
///
/// # Examples
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream1 = stream::iter(1..=3);
/// let stream2 = stream::iter(5..=10);
///
/// let vec = block_on(stream1.zip(stream2)
/// .collect::<Vec<_>>());
/// assert_eq!(vec![(1, 5), (2, 6), (3, 7)], vec);
/// ```
///
fn zip<St>(self, other: St) -> Zip<Self, St>
where St: Stream,
Self: Sized,
{
Zip::new(self, other)
}
/// Adapter for chaining two stream.
///
/// The resulting stream emits elements from the first stream, and when
/// first stream reaches the end, emits the elements from the second stream.
///
/// ```
/// use futures::executor::block_on;
/// use futures::stream::{self, StreamExt};
///
/// let stream1 = stream::iter(vec![Ok(10), Err(false)]);
/// let stream2 = stream::iter(vec![Err(true), Ok(20)]);
///
/// let stream = stream1.chain(stream2);
///
/// let result: Vec<_> = block_on(stream.collect());
/// assert_eq!(result, vec![
/// Ok(10),
/// Err(false),
/// Err(true),
/// Ok(20),
/// ]);
/// ```
fn chain<St>(self, other: St) -> Chain<Self, St>
where St: Stream<Item = Self::Item>,
Self: Sized
{
Chain::new(self, other)
}
/// Creates a new stream which exposes a `peek` method.
///
/// Calling `peek` returns a reference to the next item in the stream.
fn peekable(self) -> Peekable<Self>
where Self: Sized
{
Peekable::new(self)
}
/// An adaptor for chunking up items of the stream inside a vector.
///
/// This combinator will attempt to pull items from this stream and buffer
/// them into a local vector. At most `capacity` items will get buffered
/// before they're yielded from the returned stream.
///
/// Note that the vectors returned from this iterator may not always have
/// `capacity` elements. If the underlying stream ended and only a partial
/// vector was created, it'll be returned. Additionally if an error happens
/// from the underlying stream then the currently buffered items will be
/// yielded.
///
/// This method is only available when the `std` feature of this
/// library is activated, and it is activated by default.
///
/// # Panics
///
/// This method will panic of `capacity` is zero.
#[cfg(feature = "std")]
fn chunks(self, capacity: usize) -> Chunks<Self>
where Self: Sized
{
Chunks::new(self, capacity)
}
/// This combinator will attempt to pull items from both streams. Each
/// stream will be polled in a round-robin fashion, and whenever a stream is
/// ready to yield an item that item is yielded.
///
/// After one of the two input stream completes, the remaining one will be
/// polled exclusively. The returned stream completes when both input
/// streams have completed.
///
/// Note that this method consumes both streams and returns a wrapped
/// version of them.
fn select<St>(self, other: St) -> Select<Self, St>
where St: Stream<Item = Self::Item>,
Self: Sized,
{
Select::new(self, other)
}
/// A future that completes after the given stream has been fully processed
/// into the sink, including flushing.
///
/// This future will drive the stream to keep producing items until it is
/// exhausted, sending each item to the sink. It will complete once both the
/// stream is exhausted and the sink has received and flushed all items.
/// Note that the sink is **not** closed.
///
/// On completion, the sink is returned.
///
/// Note that this combinator is only usable with `Unpin` sinks.
/// Sinks that are not `Unpin` will need to be pinned in order to be used
/// with `forward`.
fn forward<S>(self, sink: S) -> Forward<Self, S>
where
S: Sink + Unpin,
Self: Stream<Item = Result<S::SinkItem, S::SinkError>> + Sized,
{
Forward::new(self, sink)
}
/// Splits this `Stream + Sink` object into separate `Stream` and `Sink`
/// objects.
///
/// This can be useful when you want to split ownership between tasks, or
/// allow direct interaction between the two objects (e.g. via
/// `Sink::send_all`).
///