-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdm_test_interoperable.py
executable file
·382 lines (309 loc) · 14.1 KB
/
dm_test_interoperable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""
This file contains a Druckman NU test static-neuromld model running object.
This is a hacking, re-writing and re-purposing of JB NU unit test of Druckman tests.
Which seemed to work really well with a static NU backend.
"""
import unittest
import pickle
import quantities as pq
from neuronunit.tests.druckman2013 import *
from neuronunit.neuromldb import NeuroMLDBStaticModel
from numpy import array
from quantities import *
import pickle
import glob
import sys, os
def map_to_protocol():
'''
A method that takes nothing and returns
a hard coded dictionary that keeps track of which protocol is used by each test.
which is helpful on the data analysis end of this pipeline.
'''
standard = 1.5
strong = 3.0
easy_map = [
{'AP12AmplitudeDropTest':standard},
{'AP1SSAmplitudeChangeTest':standard},
{'AP1AmplitudeTest':standard},
{'AP1WidthHalfHeightTest':standard},
{'AP1WidthPeakToTroughTest':standard},
{'AP1RateOfChangePeakToTroughTest':standard},
{'AP1AHPDepthTest':standard},
{'AP2AmplitudeTest':standard},
{'AP2WidthHalfHeightTest':standard},
{'AP2WidthPeakToTroughTest':standard},
{'AP2RateOfChangePeakToTroughTest':standard},
{'AP2AHPDepthTest':standard},
{'AP12AmplitudeChangePercentTest':standard},
{'AP12HalfWidthChangePercentTest':standard},
{'AP12RateOfChangePeakToTroughPercentChangeTest':standard},
{'AP12AHPDepthPercentChangeTest':standard},
{'InputResistanceTest':str('ir_currents')},
{'AP1DelayMeanTest':standard},
{'AP1DelaySDTest':standard},
{'AP2DelayMeanTest':standard},
{'AP2DelaySDTest':standard},
{'Burst1ISIMeanTest':standard},
{'Burst1ISISDTest':standard},
{'InitialAccommodationMeanTest':standard},
{'SSAccommodationMeanTest':standard},
{'AccommodationRateToSSTest':standard},
{'AccommodationAtSSMeanTest':standard},
{'AccommodationRateMeanAtSSTest':standard},
{'ISICVTest':standard},
{'ISIMedianTest':standard},
{'ISIBurstMeanChangeTest':standard},
{'SpikeRateStrongStimTest':strong},
{'AP1DelayMeanStrongStimTest':strong},
{'AP1DelaySDStrongStimTest':strong},
{'AP2DelayMeanStrongStimTest':strong},
{'AP2DelaySDStrongStimTest':strong},
{'Burst1ISIMeanStrongStimTest':strong},
{'Burst1ISISDStrongStimTest':strong},
]
test_prot_map = {}
for easy in easy_map:
test_prot_map.update(easy)
test_prot_map = test_prot_map
return test_prot_map
class DMTNMLO(object):
'''
An object for wrapping Druckman tests on instancable NeuroML-DB static models all in one neat package.
'''
def __init__(self):
self.predicted = {}
pickle_file = 'nmldb-model-cache.pkl'
if not os.path.exists(pickle_file):
pickle_file = os.path.join('neuronunit','unit_test',pickle_file)
try:
with open(pickle_file, 'rb') as f:
if sys.version_info[0] >= 3:
model_cache = pickle.load(f, encoding='Latin-1')
else:
model_cache = pickle.load(f)
except:
per_file_cache = glob.glob('for_dm_tests_*.p')
model_cache = {}
for model_file in per_file_cache:
with open(model_file, 'rb') as f:
key = model_file.split('.')[0]
key = key.split('for_dm_tests_')[1]
model_cache[key] = pickle.load(f)
self.test_prot_map = map_to_protocol()
self.model_cache = model_cache
def set_expected(self, expected_values):
#
assert (len(expected_values) == len(self.test_set)) or (len(expected_values) == len(self.test_set)+1)
for i, v in enumerate(expected_values):
self.test_set[i]['expected'] = v
def test_setup(self,model_id,model_dict,model=None,ir_current_limited=False):
'''
Synopsis: Construct initialize and otherwise setup Druckman tests.
if a model does not exist yet, but a desired NML-DB model id is known, use the model-id
to quickly initialize a NML-DB model.
If a model is actually passed instead, assume that model has known current_injection value
attributes and use those.
inputs: model_id, and a dictionary lookup table of models/model_ids
'''
if type(model) is type(None):
self.model = model_dict[model_id]
self.model_id = model_id
if self.model_id not in self.predicted:
self.predicted[self.model_id] = [None for i in range(38)] # There are 38 tests
self.standard = self.model.nmldb_model.get_druckmann2013_standard_current()
self.strong = self.model.nmldb_model.get_druckmann2013_strong_current()
self.ir_currents = self.model.nmldb_model.get_druckmann2013_input_resistance_currents()
#model = self.__class__.model_cache[self.model_id]
else:
self.model = model
self.standard = model.druckmann2013_standard_current
self.strong = model.druckmann2013_strong_current
self.ir_currents = model.druckmann2013_input_resistance_currents
self.test_set = [
{'test': AP12AmplitudeDropTest(self.standard), 'units': pq.mV, 'expected': None},
{'test': AP1SSAmplitudeChangeTest(self.standard), 'units': pq.mV, 'expected': None},
{'test': AP1AmplitudeTest(self.standard), 'units': pq.mV, 'expected': None},
{'test': AP1WidthHalfHeightTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP1WidthPeakToTroughTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP1RateOfChangePeakToTroughTest(self.standard), 'units': pq.mV/pq.ms, 'expected': None},
{'test': AP1AHPDepthTest(self.standard), 'units': pq.mV, 'expected': None},
{'test': AP2AmplitudeTest(self.standard), 'units': pq.mV, 'expected': None},
{'test': AP2WidthHalfHeightTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP2WidthPeakToTroughTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP2RateOfChangePeakToTroughTest(self.standard), 'units': pq.mV/pq.ms, 'expected': None},
{'test': AP2AHPDepthTest(self.standard), 'units': pq.mV, 'expected': None},
{'test': AP12AmplitudeChangePercentTest(self.standard), 'units': None, 'expected': None},
{'test': AP12HalfWidthChangePercentTest(self.standard), 'units': None, 'expected': None},
{'test': AP12RateOfChangePeakToTroughPercentChangeTest(self.standard), 'units': None, 'expected': None},
{'test': AP12AHPDepthPercentChangeTest(self.standard), 'units': None, 'expected': None},
{'test': InputResistanceTest(injection_currents=self.ir_currents), 'units': pq.Quantity(1,'MOhm'), 'expected': None},
{'test': AP1DelayMeanTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP1DelaySDTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP2DelayMeanTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': AP2DelaySDTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': Burst1ISIMeanTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': Burst1ISISDTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': InitialAccommodationMeanTest(self.standard), 'units': None, 'expected': None},
{'test': SSAccommodationMeanTest(self.standard), 'units': None, 'expected': None},
{'test': AccommodationRateToSSTest(self.standard), 'units': 1/pq.ms, 'expected': None},
{'test': AccommodationAtSSMeanTest(self.standard), 'units': None, 'expected': None},
{'test': AccommodationRateMeanAtSSTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': ISICVTest(self.standard), 'units': None, 'expected': None},
{'test': ISIMedianTest(self.standard), 'units': pq.ms, 'expected': None},
{'test': ISIBurstMeanChangeTest(self.standard), 'units': None, 'expected': None},
{'test': SpikeRateStrongStimTest(self.strong), 'units': pq.Hz, 'expected': None},
{'test': AP1DelayMeanStrongStimTest(self.strong), 'units': pq.ms, 'expected': None},
{'test': AP1DelaySDStrongStimTest(self.strong), 'units': pq.ms, 'expected': None},
{'test': AP2DelayMeanStrongStimTest(self.strong), 'units': pq.ms, 'expected': None},
{'test': AP2DelaySDStrongStimTest(self.strong), 'units': pq.ms, 'expected': None},
{'test': Burst1ISIMeanStrongStimTest(self.strong), 'units': pq.ms, 'expected': None},
{'test': Burst1ISISDStrongStimTest(self.strong), 'units': pq.ms, 'expected': None},
]
if ir_current_limited==True:
del self.test_set[16]
if not hasattr(self, "expected"):
self.expected = [0.0 for i in range(len(self.test_set))]
self.set_expected(self.expected)
#import pdb; pdb.set_trace()
'''
Depreciated
def get_model(self):
if self.model_id not in self.__class__.model_cache:
#print('Model ' + self.model_id + ' not in cache. Downloading waveforms...')
self.__class__.model_cache[self.model_id] = NeuroMLDBStaticModel(self.model_id)
model = self.__class__.model_cache[self.model_id]
fname = str('for_dm_tests_')+str(self.model_id)+str('.p')
with open(str(fname), 'wb') as fp: pickle.dump(model, fp)
if self.model_id not in self.predicted:
self.predicted[self.model_id] = [None for i in range(38)] # There are 38 tests
model = self.__class__.model_cache[self.model_id]
return model
@classmethod
def pickle_model_cache(cls):
# Use this function to re-pickle models after tests have
# run (and waveforms have been downloaded from NeuroML-DB.org)
# :return: Nothing, models are saved in a pickle file
for model in cls.model_cache.values():
# Clear AnalogSignal versions (to reduce file size) and pickle the model (to speed up unit tests)
model.vm = None
model.nmldb_model.waveform_signals = {}
model.nmldb_model.steady_state_waveform = None
#import pickle
with open(cls.pickle_file, 'w') as fp:
pickle.dump(cls.model_cache, fp)
'''
def run_test(self, index):
test_class = self.test_set[index]['test']
expected = self.test_set[index]['expected']
units = self.test_set[index]['units']
if units is None:
units = pq.dimensionless
try:
predicted = test_class.generate_prediction(self.model)['mean']
except:
predicted = None
#import pdb; pdb.set_trace()
return (test_class,predicted)
def runTest(self):
predictions = {}
for i, t in enumerate(self.test_set):
(tclass,prediction) = self.run_test(i)
try:
prot = self.test_prot_map[tclass.name]
except:
print(self.test_prot_map)
print(tclass.name)
prot = str('figure out protocol for Drop in AP amplitude from 1st to 2nd AP')
import pdb; pdb.set_trace()
#predictions[tclass.name] = {}
predictions[tclass.name] = prediction
#predictions[tclass.name]['protocol'] = prot
#print(predictions[tclass.name]['protocol'])
return predictions
def test_0(self):
self.run_test(0)
def test_1(self):
self.run_test(1)
def test_2(self):
self.run_test(2)
def test_3(self):
self.run_test(3)
def test_4(self):
self.run_test(4)
def test_5(self):
self.run_test(5)
def test_6(self):
self.run_test(6)
def test_7(self):
self.run_test(7)
def test_8(self):
self.run_test(8)
def test_9(self):
self.run_test(9)
def test_10(self):
self.run_test(10)
def test_11(self):
self.run_test(11)
def test_12(self):
self.run_test(12)
def test_13(self):
self.run_test(13)
def test_14(self):
self.run_test(14)
def test_15(self):
self.run_test(15)
def test_16(self):
self.run_test(16)
def test_17(self):
self.run_test(17)
def test_18(self):
self.run_test(18)
def test_19(self):
self.run_test(19)
def test_20(self):
self.run_test(20)
def test_21(self):
self.run_test(21)
def test_22(self):
self.run_test(22)
def test_23(self):
self.run_test(23)
def test_24(self):
self.run_test(24)
def test_25(self):
self.run_test(25)
def test_26(self):
#import pdb; pdb.set_trace()
self.run_test(26)
def test_27(self):
self.run_test(27)
def test_28(self):
self.run_test(28)
def test_29(self):
self.run_test(29)
def test_30(self):
self.run_test(30)
def test_31(self):
self.run_test(31)
def test_32(self):
self.run_test(32)
def test_33(self):
self.run_test(33)
def test_34(self):
self.run_test(34)
def test_35(self):
self.run_test(35)
def test_36(self):
self.run_test(36)
def test_37(self):
self.run_test(37)
#@classmethod
def print_predicted(cls):
for model_id in cls.predicted.keys():
print('Predicted values for '+model_id+': [')
for i, p in enumerate(cls.predicted[model_id]):
if p['predicted'] is not None:
print(' ' + str((p['predicted'] * dimensionless).magnitude).rjust(25) + ', # ' + p['test'])
else:
print(' '+'None'.rjust(25)+', # ' + p['test'])
print(' ]')