Skip to content

Latest commit

 

History

History
68 lines (52 loc) · 1.28 KB

rag.md

File metadata and controls

68 lines (52 loc) · 1.28 KB

RAG Architecture

Challenges

  1. Context embeddings creation

    • how are embeddings created? which strategy was used?
  2. Query + context

    • Ensure query + context reflect what's intended
    • provides an acceptable answer
  3. Include the generated answer in the correct place in the project

RAG General view

flowchart
    
    subgraph Prompt
        A[/Query/] --> B[Embedding model<br> <strong>text-embedding-ada-002</strong>]
        B --> C[Embeddings]
    end
    subgraph Context
        E[/Data source/] --> F[Embedding model<br> <strong>text-embedding-ada-002</strong>]
        F --> G[Embeddings]
    end
    subgraph Vector Database
        C --> D[(<strong>PostgreSQL PGVector</strong>)]
        G --> D
    end
    subgraph LLM
        A --> H[/Query + Context/]
        D --> H
        H --> I[OpenAPI o1]
        I --> J[/Response/]
    end
Loading

Integrations

flowchart
    subgraph CodeMonkey
        API
    end

    subgraph Local
        C[Repository]
    end

    subgraph Github
        D[Repository]
        Issues
        App
    end

    Github <--> CodeMonkey
    Local <--> CodeMonkey
Loading

Embeddings and LLM

Embeddings LLM
text-embedding-ada-002 OpenAPI o1
text-embedding-ada-002 Llama 3.2 (local)