-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path5_swed_robustness.html
9689 lines (9664 loc) · 495 KB
/
5_swed_robustness.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<title>Modern Sweden Robustness</title>
<script src="library/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="library/bootstrap-3.3.5/css/paper.min.css" rel="stylesheet" />
<script src="library/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="library/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="library/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="library/navigation-1.1/tabsets.js"></script>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
height: auto;
}
</style>
<script src="library/auto_tab_first_section.js"></script>
</head>
<body>
<div style="width:100%;height:200px;background-image:url('library/header/swed.jpg');background-size:cover;"></div>
<div class="container-fluid main-container"><div class="row"><div class="col-md-4"><a href="index.html"><i class="glyphicon glyphicon-th-list"></i> Back to index</a></div></div></div>
<div class="container-fluid main-container">
<div id="th-century-sweden-robustness-analyses" class="section level1 tab-content">
<h1>20th century Sweden robustness analyses</h1>
<div id="loading-details" class="section level3 accordion">
<h3>Loading details</h3>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">source</span>(<span class="st">"0__helpers.R"</span>)
opts_chunk$<span class="kw">set</span>(<span class="dt">warning=</span><span class="ot">TRUE</span>, <span class="dt">cache=</span>F,<span class="dt">cache.lazy=</span>F,<span class="dt">tidy=</span><span class="ot">FALSE</span>,<span class="dt">autodep=</span><span class="ot">TRUE</span>,<span class="dt">dev=</span><span class="kw">c</span>(<span class="st">'png'</span>,<span class="st">'pdf'</span>),<span class="dt">fig.width=</span><span class="dv">20</span>,<span class="dt">fig.height=</span><span class="fl">12.5</span>,<span class="dt">out.width=</span><span class="st">'1440px'</span>,<span class="dt">out.height=</span><span class="st">'900px'</span>,<span class="dt">cache.extra=</span><span class="kw">file.info</span>(<span class="st">'swed1.rdata'</span>)[, <span class="st">'mtime'</span>])
make_path =<span class="st"> </span>function(file) {
<span class="kw">get_coefficient_path</span>(file, <span class="st">"swed"</span>)
}
<span class="co"># options for each chunk calling knit_child</span>
opts_chunk$<span class="kw">set</span>(<span class="dt">warning=</span><span class="ot">FALSE</span>, <span class="dt">message =</span> <span class="ot">FALSE</span>)</code></pre></div>
</div>
<div id="analysis-description" class="section level2">
<h2>Analysis description</h2>
<div id="data-subset" class="section level3">
<h3>Data subset</h3>
<p>The <code>swed_subset_children.1</code> dataset is based on the full dataset of all participants where paternal age is known and birth years are from 1947 to 1959. The subset contains 117726 randomly drawn participants from 80000 families.</p>
</div>
<div id="model-description" class="section level3">
<h3>Model description</h3>
<p>All of the following models are the same as our main model m3, except for the noted changes to test robustness.</p>
</div>
</div>
<div id="r1_relaxed_exclusion_criteria" class="section level2 tab-content">
<h2><em>r1</em>: Relaxed exclusion criteria</h2>
<p>For the four historical populations, we imposed quite stringent exclusion criteria to ensure sufficient data quality for our intended analysis. This was not necessary for the modern Swedish data, because there were no exclusion criteria to relax.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">model_filename =<span class="st"> </span><span class="kw">make_path</span>(<span class="st">"r1_relaxed_exclusion_criteria"</span>)
if (<span class="kw">file.exists</span>(model_filename)) {
<span class="kw">cat</span>(<span class="kw">summarise_model</span>())
r1 =<span class="st"> </span>model
}</code></pre></div>
<div id="model-summary" class="section level3 tab-content">
<h3>Model summary</h3>
<div id="full-summary" class="section level4">
<h4>Full summary</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">model_summary =<span class="st"> </span><span class="kw">summary</span>(model, <span class="dt">use_cache =</span> <span class="ot">FALSE</span>, <span class="dt">priors =</span> <span class="ot">TRUE</span>)</code></pre></div>
<pre><code>## Warning: There were 1 divergent transitions after warmup. Increasing
## adapt_delta above 0.8 may help. See http://mc-stan.org/misc/
## warnings.html#divergent-transitions-after-warmup</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(model_summary)</code></pre></div>
<pre><code>## Family: poisson(log)
## Formula: children ~ paternalage + birth_cohort + male + maternalage.factor + paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents)
## Data: model_data (Number of observations: 117726)
## Samples: 6 chains, each with iter = 800; warmup = 300; thin = 1;
## total post-warmup samples = 3000
## WAIC: Not computed
##
## Priors:
## sd ~ student_t(3, 0, 10)
##
## Group-Level Effects:
## ~idParents (Number of levels: 75475)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 0.01 0.01 0 0.02 438 1.01
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample
## Intercept 0.72 0.02 0.69 0.75 3000
## paternalage -0.05 0.01 -0.08 -0.02 1375
## birth_cohort1950M1955 0.00 0.01 -0.02 0.01 3000
## birth_cohort1955M1960 0.00 0.01 -0.01 0.01 3000
## male1 -0.06 0.00 -0.07 -0.05 3000
## maternalage.factor1420 0.07 0.01 0.06 0.09 3000
## maternalage.factor3561 -0.01 0.01 -0.02 0.01 3000
## paternalage.mean 0.01 0.01 -0.02 0.04 1388
## paternal_loss01 0.19 0.28 -0.38 0.69 3000
## paternal_loss15 -0.06 0.08 -0.21 0.09 3000
## paternal_loss510 -0.06 0.03 -0.12 0.00 3000
## paternal_loss1015 -0.02 0.02 -0.06 0.02 3000
## paternal_loss1520 0.00 0.01 -0.03 0.03 3000
## paternal_loss2025 0.00 0.01 -0.02 0.02 3000
## paternal_loss2530 -0.02 0.01 -0.04 0.00 3000
## paternal_loss3035 0.00 0.01 -0.02 0.01 3000
## paternal_loss3540 0.00 0.01 -0.02 0.01 3000
## paternal_loss4045 -0.01 0.01 -0.03 0.00 3000
## paternal_lossunclear -0.06 0.01 -0.07 -0.04 3000
## maternal_loss01 -0.30 0.22 -0.76 0.10 3000
## maternal_loss15 -0.02 0.10 -0.22 0.18 3000
## maternal_loss510 0.00 0.05 -0.09 0.09 3000
## maternal_loss1015 -0.02 0.03 -0.07 0.04 3000
## maternal_loss1520 -0.01 0.02 -0.05 0.03 3000
## maternal_loss2025 0.03 0.02 -0.01 0.06 3000
## maternal_loss2530 0.00 0.01 -0.03 0.03 3000
## maternal_loss3035 0.00 0.01 -0.02 0.02 3000
## maternal_loss3540 0.00 0.01 -0.02 0.02 3000
## maternal_loss4045 -0.01 0.01 -0.03 0.01 3000
## maternal_lossunclear -0.02 0.01 -0.03 -0.01 3000
## older_siblings1 0.02 0.01 0.00 0.03 1642
## older_siblings2 0.03 0.01 0.00 0.05 1404
## older_siblings3 0.04 0.02 0.01 0.08 1445
## older_siblings4 0.01 0.02 -0.04 0.06 1610
## older_siblings5P -0.04 0.03 -0.10 0.02 1600
## nr.siblings 0.04 0.00 0.03 0.04 1515
## last_born1 0.01 0.00 0.00 0.02 3000
## Rhat
## Intercept 1
## paternalage 1
## birth_cohort1950M1955 1
## birth_cohort1955M1960 1
## male1 1
## maternalage.factor1420 1
## maternalage.factor3561 1
## paternalage.mean 1
## paternal_loss01 1
## paternal_loss15 1
## paternal_loss510 1
## paternal_loss1015 1
## paternal_loss1520 1
## paternal_loss2025 1
## paternal_loss2530 1
## paternal_loss3035 1
## paternal_loss3540 1
## paternal_loss4045 1
## paternal_lossunclear 1
## maternal_loss01 1
## maternal_loss15 1
## maternal_loss510 1
## maternal_loss1015 1
## maternal_loss1520 1
## maternal_loss2025 1
## maternal_loss2530 1
## maternal_loss3035 1
## maternal_loss3540 1
## maternal_loss4045 1
## maternal_lossunclear 1
## older_siblings1 1
## older_siblings2 1
## older_siblings3 1
## older_siblings4 1
## older_siblings5P 1
## nr.siblings 1
## last_born1 1
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).</code></pre>
</div>
<div id="table-of-fixed-effects" class="section level4">
<h4>Table of fixed effects</h4>
<p>Estimates are <code>exp(b)</code>. When they are referring to the hurdle (hu) component, or a dichotomous outcome, they are odds ratios, when they are referring to a Poisson component, they are hazard ratios. In both cases, they are presented with 95% credibility intervals. To see the effects on the response scale (probability or number of children), consult the marginal effect plots.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fixed_eff =<span class="st"> </span><span class="kw">data.frame</span>(model_summary$fixed, <span class="dt">check.names =</span> F)
fixed_eff$Est.Error =<span class="st"> </span>fixed_eff$Eff.Sample =<span class="st"> </span>fixed_eff$Rhat =<span class="st"> </span><span class="ot">NULL</span>
fixed_eff$<span class="st">`</span><span class="dt">Odds/hazard ratio</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$Estimate)
fixed_eff$<span class="st">`</span><span class="dt">OR/HR low 95%</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$<span class="st">`</span><span class="dt">l-95% CI</span><span class="st">`</span>)
fixed_eff$<span class="st">`</span><span class="dt">OR/HR high 95%</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$<span class="st">`</span><span class="dt">u-95% CI</span><span class="st">`</span>)
fixed_eff =<span class="st"> </span>fixed_eff %>%<span class="st"> </span><span class="kw">select</span>(<span class="st">`</span><span class="dt">Odds/hazard ratio</span><span class="st">`</span>, <span class="st">`</span><span class="dt">OR/HR low 95%</span><span class="st">`</span>, <span class="st">`</span><span class="dt">OR/HR high 95%</span><span class="st">`</span>)
pander::<span class="kw">pander</span>(fixed_eff)</code></pre></div>
<table>
<colgroup>
<col width="35%" />
<col width="24%" />
<col width="19%" />
<col width="19%" />
</colgroup>
<thead>
<tr class="header">
<th align="center"> </th>
<th align="center">Odds/hazard ratio</th>
<th align="center">OR/HR low 95%</th>
<th align="center">OR/HR high 95%</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><strong>Intercept</strong></td>
<td align="center">2.061</td>
<td align="center">1.999</td>
<td align="center">2.123</td>
</tr>
<tr class="even">
<td align="center"><strong>paternalage</strong></td>
<td align="center">0.9505</td>
<td align="center">0.9233</td>
<td align="center">0.9782</td>
</tr>
<tr class="odd">
<td align="center"><strong>birth_cohort1950M1955</strong></td>
<td align="center">0.9955</td>
<td align="center">0.9846</td>
<td align="center">1.007</td>
</tr>
<tr class="even">
<td align="center"><strong>birth_cohort1955M1960</strong></td>
<td align="center">1.001</td>
<td align="center">0.9893</td>
<td align="center">1.013</td>
</tr>
<tr class="odd">
<td align="center"><strong>male1</strong></td>
<td align="center">0.9419</td>
<td align="center">0.9338</td>
<td align="center">0.9496</td>
</tr>
<tr class="even">
<td align="center"><strong>maternalage.factor1420</strong></td>
<td align="center">1.074</td>
<td align="center">1.057</td>
<td align="center">1.091</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternalage.factor3561</strong></td>
<td align="center">0.9913</td>
<td align="center">0.9757</td>
<td align="center">1.007</td>
</tr>
<tr class="even">
<td align="center"><strong>paternalage.mean</strong></td>
<td align="center">1.007</td>
<td align="center">0.9787</td>
<td align="center">1.037</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss01</strong></td>
<td align="center">1.209</td>
<td align="center">0.6848</td>
<td align="center">1.984</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss15</strong></td>
<td align="center">0.9425</td>
<td align="center">0.8074</td>
<td align="center">1.095</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss510</strong></td>
<td align="center">0.9399</td>
<td align="center">0.8834</td>
<td align="center">0.9992</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss1015</strong></td>
<td align="center">0.9804</td>
<td align="center">0.9427</td>
<td align="center">1.02</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss1520</strong></td>
<td align="center">1</td>
<td align="center">0.9749</td>
<td align="center">1.027</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss2025</strong></td>
<td align="center">0.9972</td>
<td align="center">0.9757</td>
<td align="center">1.019</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss2530</strong></td>
<td align="center">0.9841</td>
<td align="center">0.965</td>
<td align="center">1.003</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss3035</strong></td>
<td align="center">0.9963</td>
<td align="center">0.98</td>
<td align="center">1.013</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss3540</strong></td>
<td align="center">0.9961</td>
<td align="center">0.9809</td>
<td align="center">1.012</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss4045</strong></td>
<td align="center">0.9863</td>
<td align="center">0.9708</td>
<td align="center">1.002</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_lossunclear</strong></td>
<td align="center">0.9453</td>
<td align="center">0.9344</td>
<td align="center">0.9565</td>
</tr>
<tr class="even">
<td align="center"><strong>maternal_loss01</strong></td>
<td align="center">0.7418</td>
<td align="center">0.47</td>
<td align="center">1.11</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternal_loss15</strong></td>
<td align="center">0.9842</td>
<td align="center">0.8018</td>
<td align="center">1.203</td>
</tr>
<tr class="even">
<td align="center"><strong>maternal_loss510</strong></td>
<td align="center">1.001</td>
<td align="center">0.9108</td>
<td align="center">1.096</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternal_loss1015</strong></td>
<td align="center">0.9814</td>
<td align="center">0.9292</td>
<td align="center">1.036</td>
</tr>
<tr class="even">
<td align="center"><strong>maternal_loss1520</strong></td>
<td align="center">0.9911</td>
<td align="center">0.952</td>
<td align="center">1.031</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternal_loss2025</strong></td>
<td align="center">1.026</td>
<td align="center">0.9929</td>
<td align="center">1.06</td>
</tr>
<tr class="even">
<td align="center"><strong>maternal_loss2530</strong></td>
<td align="center">1</td>
<td align="center">0.9698</td>
<td align="center">1.029</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternal_loss3035</strong></td>
<td align="center">0.9997</td>
<td align="center">0.9769</td>
<td align="center">1.023</td>
</tr>
<tr class="even">
<td align="center"><strong>maternal_loss3540</strong></td>
<td align="center">1.003</td>
<td align="center">0.9838</td>
<td align="center">1.023</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternal_loss4045</strong></td>
<td align="center">0.9914</td>
<td align="center">0.9731</td>
<td align="center">1.01</td>
</tr>
<tr class="even">
<td align="center"><strong>maternal_lossunclear</strong></td>
<td align="center">0.9808</td>
<td align="center">0.9707</td>
<td align="center">0.991</td>
</tr>
<tr class="odd">
<td align="center"><strong>older_siblings1</strong></td>
<td align="center">1.018</td>
<td align="center">1.004</td>
<td align="center">1.033</td>
</tr>
<tr class="even">
<td align="center"><strong>older_siblings2</strong></td>
<td align="center">1.028</td>
<td align="center">1.004</td>
<td align="center">1.054</td>
</tr>
<tr class="odd">
<td align="center"><strong>older_siblings3</strong></td>
<td align="center">1.042</td>
<td align="center">1.006</td>
<td align="center">1.08</td>
</tr>
<tr class="even">
<td align="center"><strong>older_siblings4</strong></td>
<td align="center">1.01</td>
<td align="center">0.9624</td>
<td align="center">1.06</td>
</tr>
<tr class="odd">
<td align="center"><strong>older_siblings5P</strong></td>
<td align="center">0.9597</td>
<td align="center">0.9038</td>
<td align="center">1.02</td>
</tr>
<tr class="even">
<td align="center"><strong>nr.siblings</strong></td>
<td align="center">1.038</td>
<td align="center">1.032</td>
<td align="center">1.044</td>
</tr>
<tr class="odd">
<td align="center"><strong>last_born1</strong></td>
<td align="center">1.009</td>
<td align="center">0.9999</td>
<td align="center">1.019</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="paternal-age-effect" class="section level3">
<h3>Paternal age effect</h3>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">pander::<span class="kw">pander</span>(<span class="kw">paternal_age_10y_effect</span>(model))</code></pre></div>
<table style="width:92%;">
<colgroup>
<col width="27%" />
<col width="25%" />
<col width="19%" />
<col width="19%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">effect</th>
<th align="center">median_estimate</th>
<th align="center">ci_95</th>
<th align="center">ci_80</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center">estimate father 25y</td>
<td align="center">1.93</td>
<td align="center">[1.89;1.96]</td>
<td align="center">[1.91;1.95]</td>
</tr>
<tr class="even">
<td align="center">estimate father 35y</td>
<td align="center">1.83</td>
<td align="center">[1.79;1.87]</td>
<td align="center">[1.81;1.86]</td>
</tr>
<tr class="odd">
<td align="center">percentage change</td>
<td align="center">-4.96</td>
<td align="center">[-7.67;-2.18]</td>
<td align="center">[-6.73;-3.14]</td>
</tr>
<tr class="even">
<td align="center">OR/IRR</td>
<td align="center">0.95</td>
<td align="center">[0.92;0.98]</td>
<td align="center">[0.93;0.97]</td>
</tr>
</tbody>
</table>
</div>
<div id="marginal-effect-plots" class="section level3">
<h3>Marginal effect plots</h3>
<p>In these marginal effect plots, we set all predictors except the one shown on the X axis to their mean and in the case of factors to their reference level. We then plot the estimated association between the X axis predictor and the outcome on the response scale (e.g. probability of survival/marriage or number of children).</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot.brmsMarginalEffects_shades</span>(
<span class="dt">x =</span> <span class="kw">marginal_effects</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.025</span>,<span class="fl">0.975</span>)),
<span class="dt">y =</span> <span class="kw">marginal_effects</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.1</span>,<span class="fl">0.9</span>)),
<span class="dt">ask =</span> <span class="ot">FALSE</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-1.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-2.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-3.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-4.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-5.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-6.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-7.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-8.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-9.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-33-10.png" width="1440px" height="900px" /></p>
</div>
<div id="coefficient-plot" class="section level3">
<h3>Coefficient plot</h3>
<p>Here, we plotted the 95% posterior densities for the unexponentiated model coefficients (<code>b_</code>). The darkly shaded area represents the 50% credibility interval, the dark line represent the posterior mean estimate.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">mcmc_areas</span>(<span class="kw">as.matrix</span>(model$fit), <span class="dt">regex_pars =</span> <span class="st">"b_[^I]"</span>, <span class="dt">point_est =</span> <span class="st">"mean"</span>, <span class="dt">prob =</span> <span class="fl">0.50</span>, <span class="dt">prob_outer =</span> <span class="fl">0.95</span>) +<span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">"Posterior densities with means and 50% intervals"</span>) +<span class="st"> </span>analysis_theme +<span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text =</span> <span class="kw">element_text</span>(<span class="dt">size =</span> <span class="dv">12</span>), <span class="dt">panel.grid =</span> <span class="kw">element_blank</span>()) +<span class="st"> </span><span class="kw">xlab</span>(<span class="st">"Coefficient size"</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-34-1.png" width="1440px" height="900px" /></p>
</div>
<div id="diagnostics" class="section level3 tab-content">
<h3>Diagnostics</h3>
<p>These plots were made to diagnose misfit and nonconvergence.</p>
<div id="posterior-predictive-checks" class="section level4">
<h4>Posterior predictive checks</h4>
<p>In posterior predictive checks, we test whether we can approximately reproduce the real data distribution from our model.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">brms::<span class="kw">pp_check</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">type =</span> <span class="st">"dens_overlay"</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-35-1.png" width="1440px" height="900px" /></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">brms::<span class="kw">pp_check</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">type =</span> <span class="st">"hist"</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-35-2.png" width="1440px" height="900px" /></p>
</div>
<div id="rhat" class="section level4">
<h4>Rhat</h4>
<p>Did the 6 chains converge?</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">stanplot</span>(model, <span class="dt">pars =</span> <span class="st">"^b_[^I]"</span>, <span class="dt">type =</span> <span class="st">'rhat'</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-36-1.png" width="1440px" height="900px" /></p>
</div>
<div id="effective-sample-size-over-average-sample-size" class="section level4">
<h4>Effective sample size over average sample size</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">stanplot</span>(model, <span class="dt">pars =</span> <span class="st">"^b"</span>, <span class="dt">type =</span> <span class="st">'neff_hist'</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-37-1.png" width="1440px" height="900px" /></p>
</div>
<div id="trace-plots" class="section level4">
<h4>Trace plots</h4>
<p>Trace plots are only shown in the case of nonconvergence.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">if(<span class="kw">any</span>( <span class="kw">summary</span>(model)$fixed[,<span class="st">"Rhat"</span>] ><span class="st"> </span><span class="fl">1.1</span>)) { <span class="co"># only do traceplots if not converged</span>
<span class="kw">plot</span>(model, <span class="dt">N =</span> <span class="dv">3</span>, <span class="dt">ask =</span> <span class="ot">FALSE</span>)
}</code></pre></div>
</div>
<div id="filecluster-script-name" class="section level4">
<h4>File/cluster script name</h4>
<p>This model was stored in the file: coefs/swed/r1_relaxed_exclusion_criteria.rds.</p>
<p>Click the following link to see the script used to generate this model:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">opts_chunk$<span class="kw">set</span>(<span class="dt">echo =</span> <span class="ot">FALSE</span>)
clusterscript =<span class="st"> </span><span class="kw">str_replace</span>(<span class="kw">basename</span>(model_filename), <span class="st">"</span><span class="ch">\\</span><span class="st">.rds"</span>,<span class="st">".html"</span>)
<span class="kw">cat</span>(<span class="st">"[Cluster script]("</span> , clusterscript, <span class="st">")"</span>, <span class="dt">sep =</span> <span class="st">""</span>)</code></pre></div>
<p><a href="r1_relaxed_exclusion_criteria.html">Cluster script</a></p>
</div>
</div>
</div>
<div id="r2_few_controls" class="section level2 tab-content">
<h2><em>r2</em>: Fewer covariates</h2>
<p>Adding covariates increases the complexity of the model and makes it harder to interpret. We chose to adjust for many potential confounds because we are interested in causal isolation of the paternal age effect. Here we show what happens when only birth cohort and average paternal age in the family are adjusted for.</p>
<div id="model-summary-1" class="section level3 tab-content">
<h3>Model summary</h3>
<div id="full-summary-1" class="section level4">
<h4>Full summary</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">model_summary =<span class="st"> </span><span class="kw">summary</span>(model, <span class="dt">use_cache =</span> <span class="ot">FALSE</span>, <span class="dt">priors =</span> <span class="ot">TRUE</span>)</code></pre></div>
<pre><code>## Warning: There were 73 divergent transitions after warmup. Increasing
## adapt_delta above 0.8 may help. See http://mc-stan.org/misc/
## warnings.html#divergent-transitions-after-warmup</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">print</span>(model_summary)</code></pre></div>
<pre><code>## Family: poisson(log)
## Formula: children ~ paternalage + birth_cohort + paternalage.mean + (1 | idParents)
## Data: model_data (Number of observations: 127284)
## Samples: 6 chains, each with iter = 1500; warmup = 1000; thin = 1;
## total post-warmup samples = 3000
## WAIC: Not computed
##
## Priors:
## b ~ normal(0,5)
## sd ~ student_t(3, 0, 5)
##
## Group-Level Effects:
## ~idParents (Number of levels: 80000)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 0.02 0.01 0 0.04 99 1.06
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## Intercept 0.72 0.01 0.70 0.75 3000 1
## paternalage -0.03 0.01 -0.04 -0.02 3000 1
## birth_cohort1950M1955 -0.01 0.01 -0.02 0.00 3000 1
## birth_cohort1955M1960 -0.02 0.01 -0.03 -0.01 3000 1
## paternalage.mean 0.00 0.01 -0.01 0.02 3000 1
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).</code></pre>
</div>
<div id="table-of-fixed-effects-1" class="section level4">
<h4>Table of fixed effects</h4>
<p>Estimates are <code>exp(b)</code>. When they are referring to the hurdle (hu) component, or a dichotomous outcome, they are odds ratios, when they are referring to a Poisson component, they are hazard ratios. In both cases, they are presented with 95% credibility intervals. To see the effects on the response scale (probability or number of children), consult the marginal effect plots.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fixed_eff =<span class="st"> </span><span class="kw">data.frame</span>(model_summary$fixed, <span class="dt">check.names =</span> F)
fixed_eff$Est.Error =<span class="st"> </span>fixed_eff$Eff.Sample =<span class="st"> </span>fixed_eff$Rhat =<span class="st"> </span><span class="ot">NULL</span>
fixed_eff$<span class="st">`</span><span class="dt">Odds/hazard ratio</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$Estimate)
fixed_eff$<span class="st">`</span><span class="dt">OR/HR low 95%</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$<span class="st">`</span><span class="dt">l-95% CI</span><span class="st">`</span>)
fixed_eff$<span class="st">`</span><span class="dt">OR/HR high 95%</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$<span class="st">`</span><span class="dt">u-95% CI</span><span class="st">`</span>)
fixed_eff =<span class="st"> </span>fixed_eff %>%<span class="st"> </span><span class="kw">select</span>(<span class="st">`</span><span class="dt">Odds/hazard ratio</span><span class="st">`</span>, <span class="st">`</span><span class="dt">OR/HR low 95%</span><span class="st">`</span>, <span class="st">`</span><span class="dt">OR/HR high 95%</span><span class="st">`</span>)
pander::<span class="kw">pander</span>(fixed_eff)</code></pre></div>
<table>
<colgroup>
<col width="35%" />
<col width="25%" />
<col width="20%" />
<col width="20%" />
</colgroup>
<thead>
<tr class="header">
<th align="center"> </th>
<th align="center">Odds/hazard ratio</th>
<th align="center">OR/HR low 95%</th>
<th align="center">OR/HR high 95%</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><strong>Intercept</strong></td>
<td align="center">2.064</td>
<td align="center">2.014</td>
<td align="center">2.115</td>
</tr>
<tr class="even">
<td align="center"><strong>paternalage</strong></td>
<td align="center">0.9679</td>
<td align="center">0.9563</td>
<td align="center">0.98</td>
</tr>
<tr class="odd">
<td align="center"><strong>birth_cohort1950M1955</strong></td>
<td align="center">0.9899</td>
<td align="center">0.9796</td>
<td align="center">1</td>
</tr>
<tr class="even">
<td align="center"><strong>birth_cohort1955M1960</strong></td>
<td align="center">0.9806</td>
<td align="center">0.9707</td>
<td align="center">0.9907</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternalage.mean</strong></td>
<td align="center">1.001</td>
<td align="center">0.9865</td>
<td align="center">1.015</td>
</tr>
</tbody>
</table>
</div>
</div>
<div id="paternal-age-effect-1" class="section level3">
<h3>Paternal age effect</h3>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">pander::<span class="kw">pander</span>(<span class="kw">paternal_age_10y_effect</span>(model))</code></pre></div>
<table style="width:88%;">
<colgroup>
<col width="27%" />
<col width="25%" />
<col width="16%" />
<col width="18%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">effect</th>
<th align="center">median_estimate</th>
<th align="center">ci_95</th>
<th align="center">ci_80</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center">estimate father 25y</td>
<td align="center">1.91</td>
<td align="center">[1.89;1.93]</td>
<td align="center">[1.9;1.92]</td>
</tr>
<tr class="even">
<td align="center">estimate father 35y</td>
<td align="center">1.85</td>
<td align="center">[1.83;1.87]</td>
<td align="center">[1.84;1.86]</td>
</tr>
<tr class="odd">
<td align="center">percentage change</td>
<td align="center">-3.2</td>
<td align="center">[-4.37;-2]</td>
<td align="center">[-3.97;-2.43]</td>
</tr>
<tr class="even">
<td align="center">OR/IRR</td>
<td align="center">0.97</td>
<td align="center">[0.96;0.98]</td>
<td align="center">[0.96;0.98]</td>
</tr>
</tbody>
</table>
</div>
<div id="marginal-effect-plots-1" class="section level3">
<h3>Marginal effect plots</h3>
<p>In these marginal effect plots, we set all predictors except the one shown on the X axis to their mean and in the case of factors to their reference level. We then plot the estimated association between the X axis predictor and the outcome on the response scale (e.g. probability of survival/marriage or number of children).</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot.brmsMarginalEffects_shades</span>(
<span class="dt">x =</span> <span class="kw">marginal_effects</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.025</span>,<span class="fl">0.975</span>)),
<span class="dt">y =</span> <span class="kw">marginal_effects</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">probs =</span> <span class="kw">c</span>(<span class="fl">0.1</span>,<span class="fl">0.9</span>)),
<span class="dt">ask =</span> <span class="ot">FALSE</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-44-1.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-44-2.png" width="1440px" height="900px" /><img src="5_swed_robustness_files/figure-html/unnamed-chunk-44-3.png" width="1440px" height="900px" /></p>
</div>
<div id="coefficient-plot-1" class="section level3">
<h3>Coefficient plot</h3>
<p>Here, we plotted the 95% posterior densities for the unexponentiated model coefficients (<code>b_</code>). The darkly shaded area represents the 50% credibility interval, the dark line represent the posterior mean estimate.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">mcmc_areas</span>(<span class="kw">as.matrix</span>(model$fit), <span class="dt">regex_pars =</span> <span class="st">"b_[^I]"</span>, <span class="dt">point_est =</span> <span class="st">"mean"</span>, <span class="dt">prob =</span> <span class="fl">0.50</span>, <span class="dt">prob_outer =</span> <span class="fl">0.95</span>) +<span class="st"> </span><span class="kw">ggtitle</span>(<span class="st">"Posterior densities with means and 50% intervals"</span>) +<span class="st"> </span>analysis_theme +<span class="st"> </span><span class="kw">theme</span>(<span class="dt">axis.text =</span> <span class="kw">element_text</span>(<span class="dt">size =</span> <span class="dv">12</span>), <span class="dt">panel.grid =</span> <span class="kw">element_blank</span>()) +<span class="st"> </span><span class="kw">xlab</span>(<span class="st">"Coefficient size"</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-45-1.png" width="1440px" height="900px" /></p>
</div>
<div id="diagnostics-1" class="section level3 tab-content">
<h3>Diagnostics</h3>
<p>These plots were made to diagnose misfit and nonconvergence.</p>
<div id="posterior-predictive-checks-1" class="section level4">
<h4>Posterior predictive checks</h4>
<p>In posterior predictive checks, we test whether we can approximately reproduce the real data distribution from our model.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">brms::<span class="kw">pp_check</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">type =</span> <span class="st">"dens_overlay"</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-46-1.png" width="1440px" height="900px" /></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">brms::<span class="kw">pp_check</span>(model, <span class="dt">re_formula =</span> <span class="ot">NA</span>, <span class="dt">type =</span> <span class="st">"hist"</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-46-2.png" width="1440px" height="900px" /></p>
</div>
<div id="rhat-1" class="section level4">
<h4>Rhat</h4>
<p>Did the 6 chains converge?</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">stanplot</span>(model, <span class="dt">pars =</span> <span class="st">"^b_[^I]"</span>, <span class="dt">type =</span> <span class="st">'rhat'</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-47-1.png" width="1440px" height="900px" /></p>
</div>
<div id="effective-sample-size-over-average-sample-size-1" class="section level4">
<h4>Effective sample size over average sample size</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">stanplot</span>(model, <span class="dt">pars =</span> <span class="st">"^b"</span>, <span class="dt">type =</span> <span class="st">'neff_hist'</span>)</code></pre></div>
<p><img src="5_swed_robustness_files/figure-html/unnamed-chunk-48-1.png" width="1440px" height="900px" /></p>
</div>
<div id="trace-plots-1" class="section level4">
<h4>Trace plots</h4>
<p>Trace plots are only shown in the case of nonconvergence.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">if(<span class="kw">any</span>( <span class="kw">summary</span>(model)$fixed[,<span class="st">"Rhat"</span>] ><span class="st"> </span><span class="fl">1.1</span>)) { <span class="co"># only do traceplots if not converged</span>
<span class="kw">plot</span>(model, <span class="dt">N =</span> <span class="dv">3</span>, <span class="dt">ask =</span> <span class="ot">FALSE</span>)
}</code></pre></div>
</div>
<div id="filecluster-script-name-1" class="section level4">
<h4>File/cluster script name</h4>
<p>This model was stored in the file: coefs/swed/r2_few_controls.rds.</p>
<p>Click the following link to see the script used to generate this model:</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">opts_chunk$<span class="kw">set</span>(<span class="dt">echo =</span> <span class="ot">FALSE</span>)
clusterscript =<span class="st"> </span><span class="kw">str_replace</span>(<span class="kw">basename</span>(model_filename), <span class="st">"</span><span class="ch">\\</span><span class="st">.rds"</span>,<span class="st">".html"</span>)
<span class="kw">cat</span>(<span class="st">"[Cluster script]("</span> , clusterscript, <span class="st">")"</span>, <span class="dt">sep =</span> <span class="st">""</span>)</code></pre></div>
<p><a href="r2_few_controls.html">Cluster script</a></p>
</div>
</div>
</div>
<div id="r3_birth_order_continuous" class="section level2 tab-content">
<h2><em>r3</em>: Continuous birth order control</h2>
<p>We chose to control for birth order/number of older siblings as a categorical variable, lumping all those who had more than 5 in the category 5+. Because a continuous covariate is also plausible, we tested this alternative model as well.</p>
<div id="model-summary-2" class="section level3 tab-content">
<h3>Model summary</h3>
<div id="full-summary-2" class="section level4">
<h4>Full summary</h4>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">model_summary =<span class="st"> </span><span class="kw">summary</span>(model, <span class="dt">use_cache =</span> <span class="ot">FALSE</span>, <span class="dt">priors =</span> <span class="ot">TRUE</span>)
<span class="kw">print</span>(model_summary)</code></pre></div>
<pre><code>## Family: poisson(log)
## Formula: children ~ paternalage + birth_cohort + male + maternalage.factor + paternalage.mean + paternal_loss + maternal_loss + older_siblings + nr.siblings + last_born + (1 | idParents)
## Data: model_data (Number of observations: 1408177)
## Samples: 6 chains, each with iter = 1000; warmup = 500; thin = 1;
## total post-warmup samples = 3000
## WAIC: Not computed
##
## Priors:
## b ~ normal(0,5)
## sd ~ student_t(3, 0, 5)
##
## Group-Level Effects:
## ~idParents (Number of levels: 884975)
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
## sd(Intercept) 0 0 0 0.01 206 1.02
##
## Population-Level Effects:
## Estimate Est.Error l-95% CI u-95% CI Eff.Sample
## Intercept 0.75 0.00 0.74 0.76 3000
## paternalage -0.02 0.00 -0.03 -0.01 3000
## birth_cohort1950M1955 0.00 0.00 0.00 0.00 3000
## birth_cohort1955M1960 0.00 0.00 0.00 0.01 3000
## male1 -0.06 0.00 -0.07 -0.06 3000
## maternalage.factor1420 0.05 0.00 0.05 0.05 3000
## maternalage.factor3561 -0.01 0.00 -0.01 0.00 3000
## paternalage.mean -0.03 0.00 -0.03 -0.02 3000
## paternal_loss01 0.11 0.05 0.01 0.21 3000
## paternal_loss15 0.03 0.02 -0.01 0.07 3000
## paternal_loss510 -0.02 0.01 -0.04 0.00 3000
## paternal_loss1015 -0.01 0.01 -0.02 0.00 3000
## paternal_loss1520 0.00 0.00 0.00 0.01 3000
## paternal_loss2025 0.00 0.00 -0.01 0.00 3000
## paternal_loss2530 0.00 0.00 0.00 0.01 3000
## paternal_loss3035 0.00 0.00 -0.01 0.00 3000
## paternal_loss3540 0.00 0.00 -0.01 0.00 3000
## paternal_loss4045 -0.01 0.00 -0.01 0.00 3000
## paternal_lossunclear -0.06 0.00 -0.06 -0.05 3000
## maternal_loss01 -0.20 0.07 -0.34 -0.06 3000
## maternal_loss15 -0.06 0.03 -0.12 -0.01 3000
## maternal_loss510 -0.01 0.01 -0.04 0.02 3000
## maternal_loss1015 -0.01 0.01 -0.02 0.01 3000
## maternal_loss1520 -0.01 0.01 -0.02 0.01 3000
## maternal_loss2025 0.01 0.01 0.00 0.02 3000
## maternal_loss2530 0.00 0.00 0.00 0.01 3000
## maternal_loss3035 0.00 0.00 0.00 0.01 3000
## maternal_loss3540 -0.01 0.00 -0.01 0.00 3000
## maternal_loss4045 0.00 0.00 -0.01 0.00 3000
## maternal_lossunclear -0.02 0.00 -0.02 -0.02 3000
## older_siblings -0.01 0.00 -0.01 -0.01 3000
## nr.siblings 0.04 0.00 0.04 0.04 3000
## last_born1 0.01 0.00 0.01 0.01 3000
## Rhat
## Intercept 1
## paternalage 1
## birth_cohort1950M1955 1
## birth_cohort1955M1960 1
## male1 1
## maternalage.factor1420 1
## maternalage.factor3561 1
## paternalage.mean 1
## paternal_loss01 1
## paternal_loss15 1
## paternal_loss510 1
## paternal_loss1015 1
## paternal_loss1520 1
## paternal_loss2025 1
## paternal_loss2530 1
## paternal_loss3035 1
## paternal_loss3540 1
## paternal_loss4045 1
## paternal_lossunclear 1
## maternal_loss01 1
## maternal_loss15 1
## maternal_loss510 1
## maternal_loss1015 1
## maternal_loss1520 1
## maternal_loss2025 1
## maternal_loss2530 1
## maternal_loss3035 1
## maternal_loss3540 1
## maternal_loss4045 1
## maternal_lossunclear 1
## older_siblings 1
## nr.siblings 1
## last_born1 1
##
## Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
## is a crude measure of effective sample size, and Rhat is the potential
## scale reduction factor on split chains (at convergence, Rhat = 1).</code></pre>
</div>
<div id="table-of-fixed-effects-2" class="section level4">
<h4>Table of fixed effects</h4>
<p>Estimates are <code>exp(b)</code>. When they are referring to the hurdle (hu) component, or a dichotomous outcome, they are odds ratios, when they are referring to a Poisson component, they are hazard ratios. In both cases, they are presented with 95% credibility intervals. To see the effects on the response scale (probability or number of children), consult the marginal effect plots.</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">fixed_eff =<span class="st"> </span><span class="kw">data.frame</span>(model_summary$fixed, <span class="dt">check.names =</span> F)
fixed_eff$Est.Error =<span class="st"> </span>fixed_eff$Eff.Sample =<span class="st"> </span>fixed_eff$Rhat =<span class="st"> </span><span class="ot">NULL</span>
fixed_eff$<span class="st">`</span><span class="dt">Odds/hazard ratio</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$Estimate)
fixed_eff$<span class="st">`</span><span class="dt">OR/HR low 95%</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$<span class="st">`</span><span class="dt">l-95% CI</span><span class="st">`</span>)
fixed_eff$<span class="st">`</span><span class="dt">OR/HR high 95%</span><span class="st">`</span> =<span class="st"> </span><span class="kw">exp</span>(fixed_eff$<span class="st">`</span><span class="dt">u-95% CI</span><span class="st">`</span>)
fixed_eff =<span class="st"> </span>fixed_eff %>%<span class="st"> </span><span class="kw">select</span>(<span class="st">`</span><span class="dt">Odds/hazard ratio</span><span class="st">`</span>, <span class="st">`</span><span class="dt">OR/HR low 95%</span><span class="st">`</span>, <span class="st">`</span><span class="dt">OR/HR high 95%</span><span class="st">`</span>)
pander::<span class="kw">pander</span>(fixed_eff)</code></pre></div>
<table>
<colgroup>
<col width="35%" />
<col width="24%" />
<col width="19%" />
<col width="19%" />
</colgroup>
<thead>
<tr class="header">
<th align="center"> </th>
<th align="center">Odds/hazard ratio</th>
<th align="center">OR/HR low 95%</th>
<th align="center">OR/HR high 95%</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center"><strong>Intercept</strong></td>
<td align="center">2.123</td>
<td align="center">2.104</td>
<td align="center">2.142</td>
</tr>
<tr class="even">
<td align="center"><strong>paternalage</strong></td>
<td align="center">0.9792</td>
<td align="center">0.9713</td>
<td align="center">0.9871</td>
</tr>
<tr class="odd">
<td align="center"><strong>birth_cohort1950M1955</strong></td>
<td align="center">1.001</td>
<td align="center">0.9976</td>
<td align="center">1.004</td>
</tr>
<tr class="even">
<td align="center"><strong>birth_cohort1955M1960</strong></td>
<td align="center">1.002</td>
<td align="center">0.9985</td>
<td align="center">1.005</td>
</tr>
<tr class="odd">
<td align="center"><strong>male1</strong></td>
<td align="center">0.9384</td>
<td align="center">0.936</td>
<td align="center">0.9408</td>
</tr>
<tr class="even">
<td align="center"><strong>maternalage.factor1420</strong></td>
<td align="center">1.052</td>
<td align="center">1.047</td>
<td align="center">1.056</td>
</tr>
<tr class="odd">
<td align="center"><strong>maternalage.factor3561</strong></td>
<td align="center">0.9935</td>
<td align="center">0.9892</td>
<td align="center">0.9977</td>
</tr>
<tr class="even">
<td align="center"><strong>paternalage.mean</strong></td>
<td align="center">0.9748</td>
<td align="center">0.9668</td>
<td align="center">0.9828</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss01</strong></td>
<td align="center">1.12</td>
<td align="center">1.01</td>
<td align="center">1.237</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss15</strong></td>
<td align="center">1.029</td>
<td align="center">0.9909</td>
<td align="center">1.067</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss510</strong></td>
<td align="center">0.9811</td>
<td align="center">0.9648</td>
<td align="center">0.9981</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss1015</strong></td>
<td align="center">0.9946</td>
<td align="center">0.9846</td>
<td align="center">1.004</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss1520</strong></td>
<td align="center">1.004</td>
<td align="center">0.9953</td>
<td align="center">1.011</td>
</tr>
<tr class="even">
<td align="center"><strong>paternal_loss2025</strong></td>
<td align="center">0.9973</td>
<td align="center">0.9908</td>
<td align="center">1.004</td>
</tr>
<tr class="odd">
<td align="center"><strong>paternal_loss2530</strong></td>