From f997c1ae3b9ef52ec6bebbe901cc1bf1ae52d26b Mon Sep 17 00:00:00 2001 From: rodalynbarce <121169437+rodalynbarce@users.noreply.github.com> Date: Mon, 12 Feb 2024 10:43:13 +0000 Subject: [PATCH] Fix Query Performance (#658) * Fix TWA performance and update tests for case insensitivity Signed-off-by: rodalynbarce * Black formatting Signed-off-by: rodalynbarce --------- Signed-off-by: rodalynbarce --- .../time_series/_time_series_query_builder.py | 24 +++++++++- .../queries/_test_utils/sdk_test_objects.py | 47 +++++++++++-------- .../time_series/test_circular_average.py | 12 +++++ .../test_circular_standard_deviation.py | 12 +++++ .../queries/time_series/test_interpolate.py | 12 +++++ .../time_series/test_interpolation_at_time.py | 12 +++++ .../queries/time_series/test_latest.py | 9 ++++ .../queries/time_series/test_metadata.py | 16 ++++++- .../rtdip_sdk/queries/time_series/test_raw.py | 7 +++ .../queries/time_series/test_resample.py | 12 +++++ .../queries/time_series/test_summary.py | 12 +++++ .../time_series/test_time_weighted_average.py | 12 +++++ 12 files changed, 164 insertions(+), 23 deletions(-) diff --git a/src/sdk/python/rtdip_sdk/queries/time_series/_time_series_query_builder.py b/src/sdk/python/rtdip_sdk/queries/time_series/_time_series_query_builder.py index 5f04775a0..9eba013bb 100644 --- a/src/sdk/python/rtdip_sdk/queries/time_series/_time_series_query_builder.py +++ b/src/sdk/python/rtdip_sdk/queries/time_series/_time_series_query_builder.py @@ -198,7 +198,11 @@ def _interpolation_query( interpolate_query = ( f"WITH resample AS ({sample_query})" + "{% if case_insensitivity_tag_search is defined and case_insensitivity_tag_search == true %}" ',date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("{{ start_date }}"), "{{ time_zone }}"), from_utc_timestamp(to_timestamp("{{ end_date }}"), "{{ time_zone }}"), INTERVAL \'{{ time_interval_rate + \' \' + time_interval_unit }}\')) AS `{{ timestamp_column }}`, explode(array(`{{ tagname_column }}`)) AS `{{ tagname_column }}` FROM resample) ' + "{% else %}" + ",date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp(\"{{ start_date }}\"), \"{{ time_zone }}\"), from_utc_timestamp(to_timestamp(\"{{ end_date }}\"), \"{{ time_zone }}\"), INTERVAL '{{ time_interval_rate + ' ' + time_interval_unit }}')) AS `{{ timestamp_column }}`, explode(array('{{ tag_names | join('\\', \\'') }}')) AS `{{ tagname_column }}`) " + "{% endif %}" '{% if (interpolation_method is defined) and (interpolation_method == "forward_fill" or interpolation_method == "backward_fill") %}' ",project AS (SELECT a.`{{ timestamp_column }}`, a.`{{ tagname_column }}`, {{ interpolation_options_0 }}(b.`{{ value_column }}`, true) OVER (PARTITION BY a.`{{ tagname_column }}` ORDER BY a.`{{ timestamp_column }}` ROWS BETWEEN {{ interpolation_options_1 }} AND {{ interpolation_options_2 }}) AS `{{ value_column }}` FROM date_array a LEFT OUTER JOIN resample b ON a.`{{ timestamp_column }}` = b.`{{ timestamp_column }}` AND a.`{{ tagname_column }}` = b.`{{ tagname_column }}`) " '{% elif (interpolation_method is defined) and (interpolation_method == "linear") %}' @@ -275,11 +279,19 @@ def _interpolation_at_time(parameters_dict: dict) -> str: "AND `{{ tagname_column }}` IN ('{{ tag_names | join('\\', \\'') }}')" "{% endif %} " "{% if include_status is defined and include_status == true and include_bad_data is defined and include_bad_data == false %} AND `{{ status_column }}` = 'Good' {% endif %}) " - ", date_array AS (SELECT DISTINCT explode(array( " + "{% if case_insensitivity_tag_search is defined and case_insensitivity_tag_search == true %}" + ", date_array AS (SELECT DISTINCT explode(array(" + "{% else %}" + ", date_array AS (SELECT explode(array( " + "{% endif %} " "{% for timestamp in timestamps -%} " 'from_utc_timestamp(to_timestamp("{{timestamp}}"), "{{time_zone}}") ' "{% if not loop.last %} , {% endif %} {% endfor %} )) AS `{{ timestamp_column }}`, " - "explode(array(`{{ tagname_column }}`)) AS `{{ tagname_column }}` FROM raw_events) " + "{% if case_insensitivity_tag_search is defined and case_insensitivity_tag_search == true %}" + "explode(array(`{{ tagname_column }}`)) AS `{{ tagname_column }}` FROM raw_events)" + "{% else %}" + "explode(array('{{ tag_names | join('\\', \\'') }}')) AS `{{ tagname_column }}`) " + "{% endif %} " ", interpolation_events AS (SELECT coalesce(a.`{{ tagname_column }}`, b.`{{ tagname_column }}`) AS `{{ tagname_column }}`, coalesce(a.`{{ timestamp_column }}`, b.`{{ timestamp_column }}`) AS `{{ timestamp_column }}`, a.`{{ timestamp_column }}` AS `Requested_{{ timestamp_column }}`, b.`{{ timestamp_column }}` AS `Found_{{ timestamp_column }}`, b.`{{ status_column }}`, b.`{{ value_column }}` FROM date_array a FULL OUTER JOIN raw_events b ON a.`{{ timestamp_column }}` = b.`{{ timestamp_column }}` AND a.`{{ tagname_column }}` = b.`{{ tagname_column }}`) " ", interpolation_calculations AS (SELECT *, lag(`{{ timestamp_column }}`) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}`) AS `Previous_{{ timestamp_column }}`, lag(`{{ value_column }}`) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}`) AS `Previous_{{ value_column }}`, lead(`{{ timestamp_column }}`) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}`) AS `Next_{{ timestamp_column }}`, lead(`{{ value_column }}`) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}`) AS `Next_{{ value_column }}`, " "CASE WHEN `Requested_{{ timestamp_column }}` = `Found_{{ timestamp_column }}` THEN `{{ value_column }}` WHEN `Next_{{ timestamp_column }}` IS NULL THEN `Previous_{{ value_column }}` WHEN `Previous_{{ timestamp_column }}` IS NULL AND `Next_{{ timestamp_column }}` IS NULL THEN NULL " @@ -460,7 +472,11 @@ def _time_weighted_average_query(parameters_dict: dict) -> str: "WHERE to_date(`{{ timestamp_column }}`) BETWEEN date_sub(to_date(to_timestamp(\"{{ start_date }}\")), {{ window_length }}) AND date_add(to_date(to_timestamp(\"{{ end_date }}\")), {{ window_length }}) AND `{{ tagname_column }}` IN ('{{ tag_names | join('\\', \\'') }}') " "{% endif %}" "{% if include_status is defined and include_status == true and include_bad_data is defined and include_bad_data == false %} AND `{{ status_column }}` = 'Good' {% endif %}) " + "{% if case_insensitivity_tag_search is defined and case_insensitivity_tag_search == true %}" ',date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("{{ start_date }}"), "{{ time_zone }}"), from_utc_timestamp(to_timestamp("{{ end_date }}"), "{{ time_zone }}"), INTERVAL \'{{ time_interval_rate + \' \' + time_interval_unit }}\')) AS `{{ timestamp_column }}`, explode(array(`{{ tagname_column }}`)) AS `{{ tagname_column }}` FROM raw_events) ' + "{% else %}" + ",date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp(\"{{ start_date }}\"), \"{{ time_zone }}\"), from_utc_timestamp(to_timestamp(\"{{ end_date }}\"), \"{{ time_zone }}\"), INTERVAL '{{ time_interval_rate + ' ' + time_interval_unit }}')) AS `{{ timestamp_column }}`, explode(array('{{ tag_names | join('\\', \\'') }}')) AS `{{ tagname_column }}`) " + "{% endif %}" ",boundary_events AS (SELECT coalesce(a.`{{ tagname_column }}`, b.`{{ tagname_column }}`) AS `{{ tagname_column }}`, coalesce(a.`{{ timestamp_column }}`, b.`{{ timestamp_column }}`) AS `{{ timestamp_column }}`, b.`{{ status_column }}`, b.`{{ value_column }}` FROM date_array a FULL OUTER JOIN raw_events b ON a.`{{ timestamp_column }}` = b.`{{ timestamp_column }}` AND a.`{{ tagname_column }}` = b.`{{ tagname_column }}`) " ",window_buckets AS (SELECT `{{ timestamp_column }}` AS window_start, LEAD(`{{ timestamp_column }}`) OVER (ORDER BY `{{ timestamp_column }}`) AS window_end FROM (SELECT distinct `{{ timestamp_column }}` FROM date_array) ) " ",window_events AS (SELECT /*+ RANGE_JOIN(b, {{ range_join_seconds }} ) */ b.`{{ tagname_column }}`, b.`{{ timestamp_column }}`, a.window_start AS `WindowEventTime`, b.`{{ status_column }}`, b.`{{ value_column }}` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`{{ timestamp_column }}` AND a.window_end > b.`{{ timestamp_column }}`) " @@ -571,7 +587,11 @@ def _circular_stats_query(parameters_dict: dict) -> str: "WHERE `{{ timestamp_column }}` BETWEEN TO_TIMESTAMP(\"{{ start_date }}\") AND TO_TIMESTAMP(\"{{ end_date }}\") AND `{{ tagname_column }}` IN ('{{ tag_names | join('\\', \\'') }}') " "{% endif %}" "{% if include_status is defined and include_status == true and include_bad_data is defined and include_bad_data == false %} AND `{{ status_column }}` = 'Good' {% endif %}) " + "{% if case_insensitivity_tag_search is defined and case_insensitivity_tag_search == true %}" ',date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("{{ start_date }}"), "{{ time_zone }}"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("{{ end_date }}"), "{{ time_zone }}"), INTERVAL \'{{ time_interval_rate + \' \' + time_interval_unit }}\')) AS `{{ timestamp_column }}`, EXPLODE(ARRAY(`{{ tagname_column }}`)) AS `{{ tagname_column }}` FROM raw_events) ' + "{% else %}" + ",date_array AS (SELECT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP(\"{{ start_date }}\"), \"{{ time_zone }}\"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP(\"{{ end_date }}\"), \"{{ time_zone }}\"), INTERVAL '{{ time_interval_rate + ' ' + time_interval_unit }}')) AS `{{ timestamp_column }}`, EXPLODE(ARRAY('{{ tag_names | join('\\', \\'') }}')) AS `{{ tagname_column }}`) " + "{% endif %}" ",window_events AS (SELECT COALESCE(a.`{{ tagname_column }}`, b.`{{ tagname_column }}`) AS `{{ tagname_column }}`, COALESCE(a.`{{ timestamp_column }}`, b.`{{ timestamp_column }}`) AS `{{ timestamp_column }}`, WINDOW(COALESCE(a.`{{ timestamp_column }}`, b.`{{ timestamp_column }}`), '{{ time_interval_rate + ' ' + time_interval_unit }}').START `Window{{ timestamp_column }}`, b.`{{ status_column }}`, b.`{{ value_column }}` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`{{ timestamp_column }}` AS LONG) = CAST(b.`{{ timestamp_column }}` AS LONG) AND a.`{{ tagname_column }}` = b.`{{ tagname_column }}`) " ",calculation_set_up AS (SELECT `{{ timestamp_column }}`, `Window{{ timestamp_column }}`, `{{ tagname_column }}`, `{{ value_column }}`, MOD(`{{ value_column }}` - {{ lower_bound }}, ({{ upper_bound }} - {{ lower_bound }}))*(2*pi()/({{ upper_bound }} - {{ lower_bound }})) AS `{{ value_column }}_in_Radians`, LAG(`{{ timestamp_column }}`) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}`) AS `Previous_{{ timestamp_column }}`, (unix_millis(`{{ timestamp_column }}`) - unix_millis(`Previous_{{ timestamp_column }}`)) / 86400000 AS Time_Difference, COS(`{{ value_column }}_in_Radians`) AS Cos_Value, SIN(`{{ value_column }}_in_Radians`) AS Sin_Value FROM window_events) " ",circular_average_calculations AS (SELECT `Window{{ timestamp_column }}`, `{{ tagname_column }}`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `{{ tagname_column }}` ORDER BY `{{ timestamp_column }}` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) " diff --git a/tests/sdk/python/rtdip_sdk/queries/_test_utils/sdk_test_objects.py b/tests/sdk/python/rtdip_sdk/queries/_test_utils/sdk_test_objects.py index b5c43c40b..40410b99d 100644 --- a/tests/sdk/python/rtdip_sdk/queries/_test_utils/sdk_test_objects.py +++ b/tests/sdk/python/rtdip_sdk/queries/_test_utils/sdk_test_objects.py @@ -28,27 +28,36 @@ "start_date": "2011-01-01", "end_date": "2011-01-02", "include_bad_data": True, - "case_insensitivity_tag_search": True, } MOCKED_QUERY_OFFSET_LIMIT = "LIMIT 10 OFFSET 10 " -RAW_MOCKED_QUERY = 'SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ORDER BY `TagName`, `EventTime` ' -RESAMPLE_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ORDER BY `TagName`, `EventTime` ) SELECT * FROM project ' -RESAMPLE_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ORDER BY `TagName`, `EventTime` ) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, UPPER(`TagName`) AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'MOCKED-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' -INTERPOLATE_MOCKED_QUERY = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM resample) ,project AS (SELECT a.`EventTime`, a.`TagName`, last_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -INTERPOLATE_MOCKED_QUERY_BACKWARD_FILL = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM resample) ,project AS (SELECT a.`EventTime`, a.`TagName`, first_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -INTERPOLATE_MOCKED_QUERY_PIVOT = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM resample) ,project AS (SELECT a.`EventTime`, a.`TagName`, last_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, UPPER(`TagName`) AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'MOCKED-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' -TWA_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, false AS Step FROM fill_value) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -TWA_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, IFNULL(Step, false) AS Step FROM fill_value f LEFT JOIN `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` m ON f.`TagName` = m.`TagName`) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, UPPER(`TagName`) AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'MOCKED-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' -TWA_MOCKED_QUERY_METADATA = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, IFNULL(Step, false) AS Step FROM fill_value f LEFT JOIN `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` m ON f.`TagName` = m.`TagName`) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -IAT_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) , date_array AS (SELECT DISTINCT explode(array( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") )) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) , interpolation_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, a.`EventTime` AS `Requested_EventTime`, b.`EventTime` AS `Found_EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) , interpolation_calculations AS (SELECT *, lag(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, lag(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_Value`, lead(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_EventTime`, lead(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Value`, CASE WHEN `Requested_EventTime` = `Found_EventTime` THEN `Value` WHEN `Next_EventTime` IS NULL THEN `Previous_Value` WHEN `Previous_EventTime` IS NULL AND `Next_EventTime` IS NULL THEN NULL ELSE `Previous_Value` + ((`Next_Value` - `Previous_Value`) * ((unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`)) / (unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`)))) END AS `Interpolated_Value` FROM interpolation_events) ,project AS (SELECT `TagName`, `EventTime`, `Interpolated_Value` AS `Value` FROM interpolation_calculations WHERE `EventTime` IN ( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") ) ) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -IAT_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) , date_array AS (SELECT DISTINCT explode(array( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") )) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) , interpolation_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, a.`EventTime` AS `Requested_EventTime`, b.`EventTime` AS `Found_EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) , interpolation_calculations AS (SELECT *, lag(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, lag(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_Value`, lead(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_EventTime`, lead(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Value`, CASE WHEN `Requested_EventTime` = `Found_EventTime` THEN `Value` WHEN `Next_EventTime` IS NULL THEN `Previous_Value` WHEN `Previous_EventTime` IS NULL AND `Next_EventTime` IS NULL THEN NULL ELSE `Previous_Value` + ((`Next_Value` - `Previous_Value`) * ((unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`)) / (unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`)))) END AS `Interpolated_Value` FROM interpolation_events) ,project AS (SELECT `TagName`, `EventTime`, `Interpolated_Value` AS `Value` FROM interpolation_calculations WHERE `EventTime` IN ( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") ) ) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, UPPER(`TagName`) AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'MOCKED-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' -METADATA_MOCKED_QUERY = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` WHERE UPPER(`TagName`) IN ('MOCKED-TAGNAME') ORDER BY `TagName` " +RAW_MOCKED_QUERY = 'SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ORDER BY `TagName`, `EventTime` ' +RAW_MOCKED_QUERY_CHECK_TAGS = 'SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ORDER BY `TagName`, `EventTime` ' +RESAMPLE_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ORDER BY `TagName`, `EventTime` ) SELECT * FROM project ' +RESAMPLE_MOCKED_QUERY_CHECK_TAGS = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ORDER BY `TagName`, `EventTime` ) SELECT * FROM project ' +RESAMPLE_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ORDER BY `TagName`, `EventTime` ) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, `TagName` AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'mocked-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' +INTERPOLATE_MOCKED_QUERY = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) ,project AS (SELECT a.`EventTime`, a.`TagName`, last_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +INTERPOLATE_MOCKED_QUERY_BACKWARD_FILL = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) ,project AS (SELECT a.`EventTime`, a.`TagName`, first_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +INTERPOLATE_MOCKED_QUERY_CHECK_TAGS = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM resample) ,project AS (SELECT a.`EventTime`, a.`TagName`, last_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +INTERPOLATE_MOCKED_QUERY_PIVOT = 'WITH resample AS (WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS timestamp_array) ,window_buckets AS (SELECT timestamp_array AS window_start, timestampadd(minute, 15, timestamp_array) AS window_end FROM date_array) ,resample AS (SELECT /*+ RANGE_JOIN(d, 900 ) */ d.window_start, d.window_end, e.`TagName`, avg(e.`Value`) OVER (PARTITION BY e.`TagName`, d.window_start ORDER BY e.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS `Value` FROM window_buckets d INNER JOIN raw_events e ON d.window_start <= e.`EventTime` AND d.window_end > e.`EventTime`) ,project AS (SELECT window_start AS `EventTime`, `TagName`, `Value` FROM resample GROUP BY window_start, `TagName`, `Value` ) SELECT * FROM project ),date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) ,project AS (SELECT a.`EventTime`, a.`TagName`, last_value(b.`Value`, true) OVER (PARTITION BY a.`TagName` ORDER BY a.`EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Value` FROM date_array a LEFT OUTER JOIN resample b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, `TagName` AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'mocked-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' +TWA_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, false AS Step FROM fill_value) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +TWA_MOCKED_QUERY_CHECK_TAGS = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, false AS Step FROM fill_value) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +TWA_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, IFNULL(Step, false) AS Step FROM fill_value f LEFT JOIN `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` m ON f.`TagName` = m.`TagName`) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, `TagName` AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'mocked-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' +TWA_MOCKED_QUERY_METADATA = 'WITH raw_events AS (SELECT DISTINCT `TagName`, from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-02T23:59:59+00:00")), 1) AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT explode(sequence(from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000"), from_utc_timestamp(to_timestamp("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) ,boundary_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) ,window_buckets AS (SELECT `EventTime` AS window_start, LEAD(`EventTime`) OVER (ORDER BY `EventTime`) AS window_end FROM (SELECT distinct `EventTime` FROM date_array) ) ,window_events AS (SELECT /*+ RANGE_JOIN(b, 900 ) */ b.`TagName`, b.`EventTime`, a.window_start AS `WindowEventTime`, b.`Status`, b.`Value` FROM boundary_events b LEFT OUTER JOIN window_buckets a ON a.window_start <= b.`EventTime` AND a.window_end > b.`EventTime`) ,fill_status AS (SELECT *, last_value(`Status`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Status`, CASE WHEN `Fill_Status` = "Good" THEN `Value` ELSE null END AS `Good_Value` FROM window_events) ,fill_value AS (SELECT *, last_value(`Good_Value`, true) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS `Fill_Value` FROM fill_status) ,fill_step AS (SELECT *, IFNULL(Step, false) AS Step FROM fill_value f LEFT JOIN `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` m ON f.`TagName` = m.`TagName`) ,interpolate AS (SELECT *, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lag(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Previous_Fill_Value`, lead(`EventTime`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) AS `Next_EventTime`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN lead(`Fill_Value`) OVER ( PARTITION BY `TagName` ORDER BY `EventTime` ) ELSE NULL END AS `Next_Fill_Value`, CASE WHEN `Step` = false AND `Status` IS NULL AND `Value` IS NULL THEN `Previous_Fill_Value` + ( (`Next_Fill_Value` - `Previous_Fill_Value`) * ( ( unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`) ) / ( unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`) ) ) ) ELSE NULL END AS `Interpolated_Value`, coalesce(`Interpolated_Value`, `Fill_Value`) as `Event_Value` FROM fill_step ),twa_calculations AS (SELECT `TagName`, `EventTime`, `WindowEventTime`, `Step`, `Status`, `Value`, `Previous_EventTime`, `Previous_Fill_Value`, `Next_EventTime`, `Next_Fill_Value`, `Interpolated_Value`, `Fill_Status`, `Fill_Value`, `Event_Value`, lead(`Fill_Status`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Status` , CASE WHEN `Next_Status` = "Good" OR (`Fill_Status` = "Good" AND `Next_Status` != "Good") THEN lead(`Event_Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) ELSE `Value` END AS `Next_Value_For_Status` , CASE WHEN `Fill_Status` = "Good" THEN `Next_Value_For_Status` ELSE 0 END AS `Next_Value` , CASE WHEN `Fill_Status` = "Good" AND `Next_Status` = "Good" THEN ((cast(`Next_EventTime` AS double) - cast(`EventTime` AS double)) / 60) WHEN `Fill_Status` = "Good" AND `Next_Status` != "Good" THEN ((cast(`Next_EventTime` AS integer) - cast(`EventTime` AS double)) / 60) ELSE 0 END AS good_minutes , CASE WHEN Step == false THEN ((`Event_Value` + `Next_Value`) * 0.5) * good_minutes ELSE (`Event_Value` * good_minutes) END AS twa_value FROM interpolate) ,twa AS (SELECT `TagName`, `WindowEventTime` AS `EventTime`, sum(twa_value) / sum(good_minutes) AS `Value` from twa_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT * FROM twa WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00") AND to_timestamp("2011-01-02T23:59:59")) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +IAT_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND `TagName` IN (\'mocked-TAGNAME\') ) , date_array AS (SELECT explode(array( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") )) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) , interpolation_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, a.`EventTime` AS `Requested_EventTime`, b.`EventTime` AS `Found_EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) , interpolation_calculations AS (SELECT *, lag(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, lag(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_Value`, lead(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_EventTime`, lead(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Value`, CASE WHEN `Requested_EventTime` = `Found_EventTime` THEN `Value` WHEN `Next_EventTime` IS NULL THEN `Previous_Value` WHEN `Previous_EventTime` IS NULL AND `Next_EventTime` IS NULL THEN NULL ELSE `Previous_Value` + ((`Next_Value` - `Previous_Value`) * ((unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`)) / (unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`)))) END AS `Interpolated_Value` FROM interpolation_events) ,project AS (SELECT `TagName`, `EventTime`, `Interpolated_Value` AS `Value` FROM interpolation_calculations WHERE `EventTime` IN ( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") ) ) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +IAT_MOCKED_QUERY_CHECK_TAGS = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) , date_array AS (SELECT DISTINCT explode(array( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") )) AS `EventTime`, explode(array(`TagName`)) AS `TagName` FROM raw_events) , interpolation_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, a.`EventTime` AS `Requested_EventTime`, b.`EventTime` AS `Found_EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) , interpolation_calculations AS (SELECT *, lag(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, lag(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_Value`, lead(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_EventTime`, lead(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Value`, CASE WHEN `Requested_EventTime` = `Found_EventTime` THEN `Value` WHEN `Next_EventTime` IS NULL THEN `Previous_Value` WHEN `Previous_EventTime` IS NULL AND `Next_EventTime` IS NULL THEN NULL ELSE `Previous_Value` + ((`Next_Value` - `Previous_Value`) * ((unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`)) / (unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`)))) END AS `Interpolated_Value` FROM interpolation_events) ,project AS (SELECT `TagName`, `EventTime`, `Interpolated_Value` AS `Value` FROM interpolation_calculations WHERE `EventTime` IN ( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") ) ) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +IAT_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE to_date(`EventTime`) BETWEEN date_sub(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND date_add(to_date(to_timestamp("2011-01-01T00:00:00+00:00")), 1) AND `TagName` IN (\'mocked-TAGNAME\') ) , date_array AS (SELECT explode(array( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") )) AS `EventTime`, explode(array(\'mocked-TAGNAME\')) AS `TagName`) , interpolation_events AS (SELECT coalesce(a.`TagName`, b.`TagName`) AS `TagName`, coalesce(a.`EventTime`, b.`EventTime`) AS `EventTime`, a.`EventTime` AS `Requested_EventTime`, b.`EventTime` AS `Found_EventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON a.`EventTime` = b.`EventTime` AND a.`TagName` = b.`TagName`) , interpolation_calculations AS (SELECT *, lag(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, lag(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_Value`, lead(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_EventTime`, lead(`Value`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Next_Value`, CASE WHEN `Requested_EventTime` = `Found_EventTime` THEN `Value` WHEN `Next_EventTime` IS NULL THEN `Previous_Value` WHEN `Previous_EventTime` IS NULL AND `Next_EventTime` IS NULL THEN NULL ELSE `Previous_Value` + ((`Next_Value` - `Previous_Value`) * ((unix_timestamp(`EventTime`) - unix_timestamp(`Previous_EventTime`)) / (unix_timestamp(`Next_EventTime`) - unix_timestamp(`Previous_EventTime`)))) END AS `Interpolated_Value` FROM interpolation_events) ,project AS (SELECT `TagName`, `EventTime`, `Interpolated_Value` AS `Value` FROM interpolation_calculations WHERE `EventTime` IN ( from_utc_timestamp(to_timestamp("2011-01-01T00:00:00+00:00"), "+0000") ) ) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, `TagName` AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'mocked-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' +METADATA_MOCKED_QUERY = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` WHERE `TagName` IN ('mocked-TAGNAME') ORDER BY `TagName` " +METADATA_MOCKED_QUERY_CHECK_TAGS = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` WHERE UPPER(`TagName`) IN ('MOCKED-TAGNAME') ORDER BY `TagName` " METADATA_MOCKED_QUERY_NO_TAGS = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` ORDER BY `TagName` " -CIRCULAR_AVERAGE_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(`TagName`)) AS `TagName` FROM raw_events) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, (Circular_Average_Value_in_Radians * (360 - 0)) / (2*pi())+ 0 AS Circular_Average_Value_in_Degrees FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Average_Value_in_Degrees AS `Value` FROM circular_average_results) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -CIRCULAR_AVERAGE_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(`TagName`)) AS `TagName` FROM raw_events) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, (Circular_Average_Value_in_Radians * (360 - 0)) / (2*pi())+ 0 AS Circular_Average_Value_in_Degrees FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Average_Value_in_Degrees AS `Value` FROM circular_average_results) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, UPPER(`TagName`) AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'MOCKED-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' -CIRCULAR_SD_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(`TagName`)) AS `TagName` FROM raw_events) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, SQRT(-2*LN(R)) * ( 360 - 0) / (2*PI()) AS Circular_Standard_Deviation FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Standard_Deviation AS `Value` FROM circular_average_results) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' -CIRCULAR_SD_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(`TagName`)) AS `TagName` FROM raw_events) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, SQRT(-2*LN(R)) * ( 360 - 0) / (2*PI()) AS Circular_Standard_Deviation FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Standard_Deviation AS `Value` FROM circular_average_results) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, UPPER(`TagName`) AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'MOCKED-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' -LATEST_MOCKED_QUERY = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_latest` WHERE UPPER(`TagName`) IN ('MOCKED-TAGNAME') ORDER BY `TagName` " +CIRCULAR_AVERAGE_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(\'mocked-TAGNAME\')) AS `TagName`) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, (Circular_Average_Value_in_Radians * (360 - 0)) / (2*pi())+ 0 AS Circular_Average_Value_in_Degrees FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Average_Value_in_Degrees AS `Value` FROM circular_average_results) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +CIRCULAR_AVERAGE_MOCKED_QUERY_CHECK_TAGS = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(`TagName`)) AS `TagName` FROM raw_events) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, (Circular_Average_Value_in_Radians * (360 - 0)) / (2*pi())+ 0 AS Circular_Average_Value_in_Degrees FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Average_Value_in_Degrees AS `Value` FROM circular_average_results) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +CIRCULAR_AVERAGE_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(\'mocked-TAGNAME\')) AS `TagName`) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, (Circular_Average_Value_in_Radians * (360 - 0)) / (2*pi())+ 0 AS Circular_Average_Value_in_Degrees FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Average_Value_in_Degrees AS `Value` FROM circular_average_results) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, `TagName` AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'mocked-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' +CIRCULAR_SD_MOCKED_QUERY = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(\'mocked-TAGNAME\')) AS `TagName`) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, SQRT(-2*LN(R)) * ( 360 - 0) / (2*PI()) AS Circular_Standard_Deviation FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Standard_Deviation AS `Value` FROM circular_average_results) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +CIRCULAR_SD_MOCKED_QUERY_CHECK_TAGS = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') ) ,date_array AS (SELECT DISTINCT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(`TagName`)) AS `TagName` FROM raw_events) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, SQRT(-2*LN(R)) * ( 360 - 0) / (2*PI()) AS Circular_Standard_Deviation FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Standard_Deviation AS `Value` FROM circular_average_results) SELECT * FROM project ORDER BY `TagName`, `EventTime` ' +CIRCULAR_SD_MOCKED_QUERY_PIVOT = 'WITH raw_events AS (SELECT DISTINCT from_utc_timestamp(to_timestamp(date_format(`EventTime`, \'yyyy-MM-dd HH:mm:ss.SSS\')), "+0000") AS `EventTime`, `TagName`, `Status`, `Value` FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN TO_TIMESTAMP("2011-01-01T00:00:00+00:00") AND TO_TIMESTAMP("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') ) ,date_array AS (SELECT EXPLODE(SEQUENCE(FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-01T00:00:00+00:00"), "+0000"), FROM_UTC_TIMESTAMP(TO_TIMESTAMP("2011-01-02T23:59:59+00:00"), "+0000"), INTERVAL \'15 minute\')) AS `EventTime`, EXPLODE(ARRAY(\'mocked-TAGNAME\')) AS `TagName`) ,window_events AS (SELECT COALESCE(a.`TagName`, b.`TagName`) AS `TagName`, COALESCE(a.`EventTime`, b.`EventTime`) AS `EventTime`, WINDOW(COALESCE(a.`EventTime`, b.`EventTime`), \'15 minute\').START `WindowEventTime`, b.`Status`, b.`Value` FROM date_array a FULL OUTER JOIN raw_events b ON CAST(a.`EventTime` AS LONG) = CAST(b.`EventTime` AS LONG) AND a.`TagName` = b.`TagName`) ,calculation_set_up AS (SELECT `EventTime`, `WindowEventTime`, `TagName`, `Value`, MOD(`Value` - 0, (360 - 0))*(2*pi()/(360 - 0)) AS `Value_in_Radians`, LAG(`EventTime`) OVER (PARTITION BY `TagName` ORDER BY `EventTime`) AS `Previous_EventTime`, (unix_millis(`EventTime`) - unix_millis(`Previous_EventTime`)) / 86400000 AS Time_Difference, COS(`Value_in_Radians`) AS Cos_Value, SIN(`Value_in_Radians`) AS Sin_Value FROM window_events) ,circular_average_calculations AS (SELECT `WindowEventTime`, `TagName`, Time_Difference, AVG(Cos_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Cos, AVG(Sin_Value) OVER (PARTITION BY `TagName` ORDER BY `EventTime` ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS Average_Sin, SQRT(POW(Average_Cos, 2) + POW(Average_Sin, 2)) AS Vector_Length, Average_Cos/Vector_Length AS Rescaled_Average_Cos, Average_Sin/Vector_Length AS Rescaled_Average_Sin, Time_Difference * Rescaled_Average_Cos AS Diff_Average_Cos, Time_Difference * Rescaled_Average_Sin AS Diff_Average_Sin FROM calculation_set_up) ,circular_average_results AS (SELECT `WindowEventTime` AS `EventTime`, `TagName`, sum(Diff_Average_Cos)/sum(Time_Difference) AS Cos_Time_Averages, sum(Diff_Average_Sin)/sum(Time_Difference) AS Sin_Time_Averages, array_min(array(1, sqrt(pow(Cos_Time_Averages, 2) + pow(Sin_Time_Averages, 2)))) AS R, mod(2*pi() + atan2(Sin_Time_Averages, Cos_Time_Averages), 2*pi()) AS Circular_Average_Value_in_Radians, SQRT(-2*LN(R)) * ( 360 - 0) / (2*PI()) AS Circular_Standard_Deviation FROM circular_average_calculations GROUP BY `TagName`, `WindowEventTime`) ,project AS (SELECT `EventTime`, `TagName`, Circular_Standard_Deviation AS `Value` FROM circular_average_results) ,pivot AS (SELECT * FROM (SELECT `EventTime`, `Value`, `TagName` AS `TagName` FROM project) PIVOT (FIRST(`Value`) FOR `TagName` IN (\'mocked-TAGNAME\' AS `mocked-TAGNAME`))) SELECT * FROM pivot ORDER BY `EventTime` ' +LATEST_MOCKED_QUERY = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_latest` WHERE `TagName` IN ('mocked-TAGNAME') ORDER BY `TagName` " +LATEST_MOCKED_QUERY_CHECK_TAGS = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_latest` WHERE UPPER(`TagName`) IN ('MOCKED-TAGNAME') ORDER BY `TagName` " LATEST_MOCKED_QUERY_NO_TAGS = "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_latest` ORDER BY `TagName` " -SUMMARY_MOCKED_QUERY = 'SELECT `TagName`, count(`Value`) as Count, CAST(Avg(`Value`) as decimal(10, 2)) as Avg, CAST(Min(`Value`) as decimal(10, 2)) as Min, CAST(Max(`Value`) as decimal(10, 2)) as Max, CAST(stddev(`Value`) as decimal(10, 2)) as StDev, CAST(sum(`Value`) as decimal(10, 2)) as Sum, CAST(variance(`Value`) as decimal(10, 2)) as Var FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') GROUP BY `TagName` ' +SUMMARY_MOCKED_QUERY = 'SELECT `TagName`, count(`Value`) as Count, CAST(Avg(`Value`) as decimal(10, 2)) as Avg, CAST(Min(`Value`) as decimal(10, 2)) as Min, CAST(Max(`Value`) as decimal(10, 2)) as Max, CAST(stddev(`Value`) as decimal(10, 2)) as StDev, CAST(sum(`Value`) as decimal(10, 2)) as Sum, CAST(variance(`Value`) as decimal(10, 2)) as Var FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND `TagName` IN (\'mocked-TAGNAME\') GROUP BY `TagName` ' +SUMMARY_MOCKED_QUERY_CHECK_TAGS = 'SELECT `TagName`, count(`Value`) as Count, CAST(Avg(`Value`) as decimal(10, 2)) as Avg, CAST(Min(`Value`) as decimal(10, 2)) as Min, CAST(Max(`Value`) as decimal(10, 2)) as Max, CAST(stddev(`Value`) as decimal(10, 2)) as StDev, CAST(sum(`Value`) as decimal(10, 2)) as Sum, CAST(variance(`Value`) as decimal(10, 2)) as Var FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_events_mocked-data-type` WHERE `EventTime` BETWEEN to_timestamp("2011-01-01T00:00:00+00:00") AND to_timestamp("2011-01-02T23:59:59+00:00") AND UPPER(`TagName`) IN (\'MOCKED-TAGNAME\') GROUP BY `TagName` ' diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_average.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_average.py index b69166be7..8ceb26183 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_average.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_average.py @@ -28,6 +28,7 @@ MOCKED_PARAMETER_DICT, MOCKED_QUERY_OFFSET_LIMIT, CIRCULAR_AVERAGE_MOCKED_QUERY, + CIRCULAR_AVERAGE_MOCKED_QUERY_CHECK_TAGS, CIRCULAR_AVERAGE_MOCKED_QUERY_PIVOT, ) @@ -48,7 +49,18 @@ def test_circular_average(mocker: MockerFixture): ) +def test_circular_average_check_tags(mocker: MockerFixture): + MOCKED_CIRCULAR_AVERAGE_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_CIRCULAR_AVERAGE_PARAMETER_DICT, + CIRCULAR_AVERAGE_MOCKED_QUERY_CHECK_TAGS, + circular_average_get, + ) + + def test_circular_average_pivot(mocker: MockerFixture): + MOCKED_CIRCULAR_AVERAGE_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_CIRCULAR_AVERAGE_PARAMETER_DICT["pivot"] = True _test_base_succeed( mocker, diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_standard_deviation.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_standard_deviation.py index 8d54e7be4..eb9b62b52 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_standard_deviation.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_circular_standard_deviation.py @@ -27,6 +27,7 @@ MOCKED_PARAMETER_DICT, MOCKED_QUERY_OFFSET_LIMIT, CIRCULAR_SD_MOCKED_QUERY, + CIRCULAR_SD_MOCKED_QUERY_CHECK_TAGS, CIRCULAR_SD_MOCKED_QUERY_PIVOT, ) @@ -47,7 +48,18 @@ def test_circular_standard_deviation(mocker: MockerFixture): ) +def test_circular_standard_deviation_check_tags(mocker: MockerFixture): + MOCKED_CIRCULAR_SD_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_CIRCULAR_SD_PARAMETER_DICT, + CIRCULAR_SD_MOCKED_QUERY_CHECK_TAGS, + circular_standard_deviation_get, + ) + + def test_circular_standard_deviation_pivot(mocker: MockerFixture): + MOCKED_CIRCULAR_SD_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_CIRCULAR_SD_PARAMETER_DICT["pivot"] = True _test_base_succeed( mocker, diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolate.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolate.py index 4e2722cf2..46aa3e055 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolate.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolate.py @@ -28,6 +28,7 @@ MOCKED_PARAMETER_DICT, INTERPOLATE_MOCKED_QUERY, INTERPOLATE_MOCKED_QUERY_BACKWARD_FILL, + INTERPOLATE_MOCKED_QUERY_CHECK_TAGS, MOCKED_QUERY_OFFSET_LIMIT, INTERPOLATE_MOCKED_QUERY_PIVOT, ) @@ -59,7 +60,18 @@ def test_interpolate_forward_fill(mocker: MockerFixture): ) +def test_interpolate_check_tags(mocker: MockerFixture): + MOCKED_INTERPOLATE_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_INTERPOLATE_PARAMETER_DICT, + INTERPOLATE_MOCKED_QUERY_CHECK_TAGS, + interpolate_get, + ) + + def test_interpolate_sample_rate_unit(mocker: MockerFixture): + MOCKED_INTERPOLATE_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_INTERPOLATE_PARAMETER_DICT["sample_rate"] = "15" MOCKED_INTERPOLATE_PARAMETER_DICT["sample_unit"] = "minute" _test_base_succeed( diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolation_at_time.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolation_at_time.py index 59b12f83b..60b26ee4b 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolation_at_time.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_interpolation_at_time.py @@ -28,6 +28,7 @@ MOCKED_PARAMETER_DICT, MOCKED_QUERY_OFFSET_LIMIT, IAT_MOCKED_QUERY, + IAT_MOCKED_QUERY_CHECK_TAGS, IAT_MOCKED_QUERY_PIVOT, ) @@ -46,7 +47,18 @@ def test_interpolation_at_time(mocker: MockerFixture): ) +def test_interpolation_at_time_check_tags(mocker: MockerFixture): + MOCKED_IAT_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_IAT_PARAMETER_DICT, + IAT_MOCKED_QUERY_CHECK_TAGS, + interpolation_at_time_get, + ) + + def test_interpolation_at_time_pivot(mocker: MockerFixture): + MOCKED_IAT_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_IAT_PARAMETER_DICT["pivot"] = True _test_base_succeed( mocker, diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_latest.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_latest.py index 22ad66288..d8717e1e1 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_latest.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_latest.py @@ -25,6 +25,7 @@ MOCKED_PARAMETER_DICT, MOCKED_QUERY_OFFSET_LIMIT, LATEST_MOCKED_QUERY, + LATEST_MOCKED_QUERY_CHECK_TAGS, LATEST_MOCKED_QUERY_NO_TAGS, ) @@ -37,7 +38,15 @@ def test_latest(mocker: MockerFixture): ) +def test_latest_check_tags(mocker: MockerFixture): + MOCKED_LATEST_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, MOCKED_LATEST_PARAMETER_DICT, LATEST_MOCKED_QUERY_CHECK_TAGS, latest_raw + ) + + def test_latest_offset_limit(mocker: MockerFixture): + MOCKED_LATEST_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_LATEST_PARAMETER_DICT["offset"] = 10 MOCKED_LATEST_PARAMETER_DICT["limit"] = 10 _test_base_succeed( diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_metadata.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_metadata.py index 6749eb1ef..28093fda6 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_metadata.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_metadata.py @@ -25,6 +25,7 @@ MOCKED_PARAMETER_DICT, MOCKED_QUERY_OFFSET_LIMIT, METADATA_MOCKED_QUERY, + METADATA_MOCKED_QUERY_CHECK_TAGS, METADATA_MOCKED_QUERY_NO_TAGS, ) @@ -39,7 +40,18 @@ def test_metadata(mocker: MockerFixture): ) +def test_metadata_check_tags(mocker: MockerFixture): + MOCKED_METADATA_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_METADATA_PARAMETER_DICT, + METADATA_MOCKED_QUERY_CHECK_TAGS, + metadata_raw, + ) + + def test_metadata_with_no_tag(mocker: MockerFixture): + MOCKED_METADATA_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_METADATA_PARAMETER_DICT.pop("tag_names") _test_base_succeed( mocker, @@ -52,11 +64,11 @@ def test_metadata_with_no_tag(mocker: MockerFixture): def test_metadata_offset_limit(mocker: MockerFixture): MOCKED_METADATA_PARAMETER_DICT["offset"] = 10 MOCKED_METADATA_PARAMETER_DICT["limit"] = 10 - MOCKED_METADATA_PARAMETER_DICT["tag_names"] = ["MOCKED-TAGNAME"] + MOCKED_METADATA_PARAMETER_DICT["tag_names"] = ["mocked-TAGNAME"] _test_base_succeed( mocker, MOCKED_METADATA_PARAMETER_DICT, - "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` WHERE UPPER(`TagName`) IN ('MOCKED-TAGNAME') ORDER BY `TagName` LIMIT 10 OFFSET 10 ", + "SELECT * FROM `mocked-buiness-unit`.`sensors`.`mocked-asset_mocked-data-security-level_metadata` WHERE `TagName` IN ('mocked-TAGNAME') ORDER BY `TagName` LIMIT 10 OFFSET 10 ", metadata_raw, ) diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_raw.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_raw.py index 7ec6383a8..a452d3c71 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_raw.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_raw.py @@ -23,6 +23,7 @@ ) from tests.sdk.python.rtdip_sdk.queries._test_utils.sdk_test_objects import ( RAW_MOCKED_QUERY, + RAW_MOCKED_QUERY_CHECK_TAGS, MOCKED_QUERY_OFFSET_LIMIT, MOCKED_PARAMETER_DICT, ) @@ -34,7 +35,13 @@ def test_raw(mocker: MockerFixture): _test_base_succeed(mocker, MOCKED_RAW_DICT, RAW_MOCKED_QUERY, raw_get) +def test_raw_check_tags(mocker: MockerFixture): + MOCKED_RAW_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed(mocker, MOCKED_RAW_DICT, RAW_MOCKED_QUERY_CHECK_TAGS, raw_get) + + def test_raw_offset_limit(mocker: MockerFixture): + MOCKED_RAW_DICT["case_insensitivity_tag_search"] = False MOCKED_RAW_DICT["offset"] = 10 MOCKED_RAW_DICT["limit"] = 10 _test_base_succeed( diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_resample.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_resample.py index b32f6f871..188e859ab 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_resample.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_resample.py @@ -26,6 +26,7 @@ MOCKED_QUERY_OFFSET_LIMIT, MOCKED_PARAMETER_DICT, RESAMPLE_MOCKED_QUERY, + RESAMPLE_MOCKED_QUERY_CHECK_TAGS, RESAMPLE_MOCKED_QUERY_PIVOT, ) @@ -45,7 +46,18 @@ def test_resample(mocker: MockerFixture): ) +def test_resample_check_tags(mocker: MockerFixture): + MOCKED_RESAMPLED_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_RESAMPLED_PARAMETER_DICT, + RESAMPLE_MOCKED_QUERY_CHECK_TAGS, + resample_get, + ) + + def test_resample_sample_rate_unit(mocker: MockerFixture): + MOCKED_RESAMPLED_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_RESAMPLED_PARAMETER_DICT["sample_rate"] = "15" MOCKED_RESAMPLED_PARAMETER_DICT["sample_unit"] = "minute" _test_base_succeed( diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_summary.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_summary.py index 20ca595e9..e32a590c5 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_summary.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_summary.py @@ -33,6 +33,7 @@ MOCKED_QUERY_OFFSET_LIMIT, MOCKED_PARAMETER_DICT, SUMMARY_MOCKED_QUERY, + SUMMARY_MOCKED_QUERY_CHECK_TAGS, ) MOCKED_SUMMARY_DICT = MOCKED_PARAMETER_DICT.copy() @@ -47,7 +48,18 @@ def test_summary_get(mocker: MockerFixture): ) +def test_summary_get_check_tags(mocker: MockerFixture): + MOCKED_SUMMARY_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_SUMMARY_DICT, + SUMMARY_MOCKED_QUERY_CHECK_TAGS, + summary_get, + ) + + def test_summary_offset_limit(mocker: MockerFixture): + MOCKED_SUMMARY_DICT["case_insensitivity_tag_search"] = False MOCKED_SUMMARY_DICT["offset"] = 10 MOCKED_SUMMARY_DICT["limit"] = 10 _test_base_succeed( diff --git a/tests/sdk/python/rtdip_sdk/queries/time_series/test_time_weighted_average.py b/tests/sdk/python/rtdip_sdk/queries/time_series/test_time_weighted_average.py index de5e72e14..2920a565b 100644 --- a/tests/sdk/python/rtdip_sdk/queries/time_series/test_time_weighted_average.py +++ b/tests/sdk/python/rtdip_sdk/queries/time_series/test_time_weighted_average.py @@ -28,6 +28,7 @@ MOCKED_PARAMETER_DICT, MOCKED_QUERY_OFFSET_LIMIT, TWA_MOCKED_QUERY, + TWA_MOCKED_QUERY_CHECK_TAGS, TWA_MOCKED_QUERY_PIVOT, TWA_MOCKED_QUERY_METADATA, ) @@ -49,7 +50,18 @@ def test_time_weighted_average(mocker: MockerFixture): ) +def test_time_weighted_average_check_tags(mocker: MockerFixture): + MOCKED_TWA_PARAMETER_DICT["case_insensitivity_tag_search"] = True + _test_base_succeed( + mocker, + MOCKED_TWA_PARAMETER_DICT, + TWA_MOCKED_QUERY_CHECK_TAGS, + time_weighted_average_get, + ) + + def test_time_weighted_average_with_window_size_mins(mocker: MockerFixture): + MOCKED_TWA_PARAMETER_DICT["case_insensitivity_tag_search"] = False MOCKED_TWA_PARAMETER_DICT["window_size_mins"] = 15 _test_base_succeed( mocker,