

Dell Technologies Technical White Paper

Alienware AlienFX SDK 5.2

User Guide

Abstract

This is the software development kit (SDK) including features and

functions available for application developers to configure colored

lighting on AlienFX hardware platforms and/or platforms with attached

AlienFX-compatible devices to achieve various desired visual effects.

March 2019

Introduction

Dell Technologies Technical White Paper

Revisions

Version
SDK
Version

Released Comments

2.0 5.2 March 6, 2019 • Clarified deprecated-managed DLLs and functions

• Changed development requirements to support latest version of
SDK

• Added FAQs and Troubleshooting appendices

1.2 2.1 March 26, 2012 Added LFX_GetVersion function

1.1 2.0 May 01, 2011 Added game configurator functions,

1.0 1.0 March 24, 2009 Alpha release

The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this

publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

© March 2019 Dell Inc. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks

may be trademarks of their respective owners.

Dell believes the information in this document is accurate as of its publication date. The information is subject to change without notice.

Introduction

Dell Technologies Technical White Paper

Table of Contents

Revisions... 2

1 Introduction ... 5

1.1 Identification .. 5

1.2 Purpose .. 5

1.3 Scope .. 5

2 Getting started .. 6

2.1 SDK 5.2 contents .. 6

2.2 System requirements for development ... 6

2.3 Library linking for development ... 7

2.3.1 Explicit dynamic linking ... 7

2.4 How Alienware AlienFX SDK works ... 7

2.5 “Hello World” with Alienware AlienFX SDK .. 7

3 Application development guidelines ... 9

3.1 Deprecated functions .. 9

3.2 Location and positioning semantics.. 9

3.3 Multithreading and command timing... 9

3.4 Plug and Play capabilities ... 9

4 Function Reference .. 10

4.1 Overview ... 10

4.2 LFX_Initialize .. 10

4.3 LFX_Release .. 10

4.4 LFX_Reset .. 11

4.5 LFX_Update .. 11

4.6 LFX_UpdateDefault .. 11

4.7 LFX_GetNumDevices ... 12

4.8 LFX_GetDeviceDescription .. 12

4.9 LFX_GetNumLights .. 13

4.10 LFX_GetLightDescription ... 13

4.11 LFX_GetLightLocation .. 14

4.12 LFX_GetLightColor ... 15

4.13 LFX_SetLightColor ... 15

4.14 LFX_Light ... 16

4.15 LFX_SetLightActionColor ... 16

Introduction

Dell Technologies Technical White Paper

4.16 LFX_SetLightActionColorEx ... 17

4.17 LFX_ActionColor... 17

4.18 LFX_ActionColorEx .. 18

4.19 LFX_SetTiming ... 19

4.20 LFX_GetVersion ... 19

A FAQs .. 21

B Troubleshooting .. 22

Introduction

Dell Technologies Technical White Paper

1 Introduction

1.1 Identification
The Dell Alienware AlienFX software development kit (SDK) is intended for users who develop applications

for AlienFX hardware platforms and/or platforms with attached AlienFX compatible devices.

Note: Apps developed with AlienFX SDK 5.2 are backwards-compatible with systems using previous AlienFX

SDKs.

1.2 Purpose
The purpose of this document is to provide a detailed, programmatic outline of the features and functions

available in the Alienware AlienFX SDK. With this, an application developer can control the lighting for any

available Alienware AlienFX devices attached to the system. By gaining control of the Alienware AlienFX

ecosystem, an application may configure devices with colored lights to achieve various desired visual effects

in response to application request(s).

1.3 Scope
This document encompasses the available features and functions of the LightFX.dll library, including its

functions, dependent libraries, data and methods needed for manipulation of color lights in the system.

Note: AlienFX SDK 2.1 and lower, which were deployed with AWCC 4.x, are not supported for development.

Getting started

Dell Technologies Technical White Paper

2 Getting started

2.1 SDK 5.2 contents
The software development kit (SDK) is comprised of the lighting libraries, application samples, and this

document. Upon installation of Alienware Command Center, the files below in Table 1 will be included in

subdirectories of the installation directory (i.e., C:\Program Files\Alienware\Command Center).

 Artifact Libraries and Locations

Artifacts Location

Documentation [InstallDir]\AlienFX SDK\

Headers and Included files [InstallDir]\AlienFX SDK\includes\

Dynamic Link Library • [InstallDir]\AlienFX SDK\DLLs\x86\LightFX.dll

• [InstallDir]\AlienFX SDK\DLLs\x64\LightFX.dll

You can also find the same libraries here:

• \Windows\System32\LightFX.dll (64-bit version)

• \Windows\SysWOW64\LightFX.dll (32-bit version)

Samples [InstallDir]\AlienFX SDK\Samples\

Warning: Do not distribute the above libraries with applications developed using Alienware AlienFX SDK.

Final releases of applications must use the LightFX.dll deployed with Alienware Command Center.

2.2 System requirements for development
For AlienFX platforms and peripherals released in 2018 and after, AWCC 5.2 or higher must be installed to

develop using AlienFX SDK 5.2.

 System Requirements for Development

Type Requirements

Operating System AlienFX SDK 5.x: Windows 10, 64-bits

Software Alienware Command Center 5.2.x

Hardware Alienware AlienFX 5.2-compliant hardware

Getting started

Dell Technologies Technical White Paper

2.3 Library linking for development
• LightFX libraries and header files for dynamic linking are provided as listed in SDK 5.2 content.

• If a game developer needs to use LIB files for static linking, please contact Alienware partnership

manager for file distribution and usage explanation.

2.3.1 Explicit dynamic linking
Using explicit dynamic linking gives developers the benefit of launching your application even if the library is

not available on the system, such as when Alienware Command Center is not present. Definitions of function

names and function pointers have been included in the library header files for explicit dynamic linking. Rather

than use the import library, the library is loaded with a call to LoadLibrary along with a call to GetProcAddress

for any desired functions of the library.

2.4 How Alienware AlienFX SDK works
Alienware AlienFX is an abstraction and translation library used to communicate with the lighting system of

platform hardware and/or attached Alienware devices. Alienware AlienFX supports a variety of device

communication protocols and provides a common subset of features for getting and setting color values for

RGB lights (LEDs, or other types) attached to the system. When initialized, the LightFX module library

identifies all the Alienware AlienFX enabled hardware, or light controllers, attached to the system, and builds

a list of these along with their physical positions in, on, around, or connected to the mechanical enclosure

(i.e., the chassis).

After identifying all the hardware, Alienware AlienFX waits for requests from the application through the

function exports provided by the AlienFX SDK. The functions can be as simple as LFX_Light, in which all the

decisions about state changes are done by the library, or as detailed as LFX_SetLightColor, which requires

an index to a valid device and a valid light to set the color value.

2.5 “Hello World” with Alienware AlienFX SDK
The requisite programmer’s example “hello world” can be implemented in Alienware AlienFX, albeit with a

color value instead of a string. Here is what it looks like:

LFX_Initialize();

// Set all lights to blue in the state machine
LFX_Light(LFX_ALL, LFX_BLUE | LFX_FULL_BRIGHTNESS);

// Causes the physical color change
LFX_Update();

//Make the system wait to have visual feedback
Sleep(100)

// Cleanup and detach from the system
LFX_Release();

While this example simply sets the color and immediately exits (thus restoring the previous state), it also

demonstrates how easy it is to incorporate Alienware AlienFX support into an application. The light, update

loop could be performed alongside a regular application interval. As well, calls to LFX_Light can be tied to

Getting started

Dell Technologies Technical White Paper

events which are queued up and submitted to the hardware upon a call to LFX_Update. See the function

reference section within this document for more details on these functions and their parameters.

Application development guidelines

Dell Technologies Technical White Paper

3 Application development guidelines
The following guidelines are provided for reference.

3.1 Deprecated functions
• LFX_UpdateDefault: This function has been deprecated. This operation can be done only through FX

module of AWCC

• LFX_SetTiming: This function has been deprecated. This operation can be done only through FX

module of AWCC

• AlienFX Configurator has been deprecated and removed from SDK

• SDK managed libraries have been deprecated and removed from SDK

3.2 Location and positioning semantics
Alienware AlienFX uses logical equivalents, e.g., front-Lower-Left, when describing physical locations. The

details for the meaning of the logical location can be found in the header files.

3.3 Multithreading and command timing
Alienware AlienFX incorporates critical sections in every library function exported.

Additionally, the Alienware AlienFX hardware abstraction layer incorporates a command queue and a

command handler thread, which masks hardware latencies.

These hardware latencies vary by device, so the command handler monitors the performance of the hardware

and drops updates that take too long in order to maintain a tight window of software request to physical

change. Currently this window is set to 100 milliseconds, meaning if an update is in the command queue for

more than 100 milliseconds, it will be dropped to allow the hardware to catch up with software. This command

buffering approach ensures that the core Alienware AlienFX functions (LFX_Light, LFX_SetLightColor,

LFX_Update) do not block the main application thread.

Note: If commands are queued longer than 100 milliseconds, they will not be applied to the hardware.

3.4 Plug and Play capabilities
Alienware AlienFX will attend at real time to the arrival of new devices. If an application wishes to add new

Alienware AlienFX devices “on the fly” this can be done by calling LFX_GetNumDevices(..) in order to get

new enumerated devices. Note that if you are referring “ALL” devices when setting colors through the different

functions there is no need to re-enumerate (call LFX_GetNumDevices(..))

Function Reference

Dell Technologies Technical White Paper

4 Function Reference

4.1 Overview
All unmanaged Alienware AlienFX library functions are exported as C-language, and all return LFX_RESULT

(type defined as unsigned integer). The following sections outline the minimum mandatory set of functions

available in a compliant Alienware AlienFX library.

4.2 LFX_Initialize
This function initializes the Alienware AlienFX system. It must be called prior to calling other library functions.

If this function is not called, the system will not be initialized, and the other library functions will return

LFX_ERROR_NOINIT or LFX_FAILURE.

Syntax:
LFX_RESULT LFX_Initialize();

Parameters:
None

Inputs:
None

Outputs:
None

Returns:
LFX_SUCCESS if the system is successfully initialized, or was already initialized
LFX_FAILURE if the initialization fails
LFX_ERROR_NODEVS if the system is initialized, but no devices are available

4.3 LFX_Release
This function releases the Alienware AlienFX system, freeing memory and restores the system to its initial

state. It may be called when the system is no longer needed.

Plug-and-Play Note: An application may choose to release the system and reinitialize it again, in response to

a device arrival notification. Doing so will account for new devices added while the application is running.

Syntax:
LFX_RESULT LFX_Release();

Parameters:

None

Inputs:
None

Outputs:
None

Returns:

Function Reference

Dell Technologies Technical White Paper

LFX_SUCCESS if the system is successfully released

4.4 LFX_Reset
This function sets all lights in the Alienware AlienFX system to ‘off’ or uncolored state. It must be noted that the
change(s) to the physical light(s) does not occur immediately. The change(s) occurs only after a call to the
LFX_Update function. For example, to disable all the lights, call LFX_Reset followed by LFX_Update.

Syntax:

LFX_RESULT LFX_Reset();

Parameters:
None

Inputs:
None

Outputs:
None

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices available to reset
LFX_SUCCESS if the reset is successful

4.5 LFX_Update
This function updates the Alienware AlienFX system by submitting any state changes to the hardware.

Syntax:

LFX_RESULT LFX_Update();

Parameters:
None

Inputs:
None

Outputs:
None

Returns:
LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices available to reset
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the update is successful

4.6 LFX_UpdateDefault
This function updates the Alienware AlienFX system by submitting any state changes to the hardware, as well

as setting the appropriate flags to enable the updated state to be the new power-on default state.

Note: This function has been deprecated

Function Reference

Dell Technologies Technical White Paper

Syntax:

LFX_RESULT LFX_UpdateDefault();

Parameters:
None

Inputs:
None

Outputs:
None

Returns:
LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices available to reset
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.7 LFX_GetNumDevices
This function provides the number of Alienware AlienFX devices attached to the system.

Syntax:
LFX_RESULT LFX_GetNumDevices (unsigned int* const numDevices);

Parameters:

numDevices integer to be populated with the number of devices

Inputs:
None

Outputs:
Populates an unsigned integer with the current number of devices attached

Returns:
LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices available to reset
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.8 LFX_GetDeviceDescription
This function gets the description and type of a device attached to the system.

Syntax:

LFX_RESULT LFX_GetDeviceDescription(const unsigned int devIndex,
char* const devDesc, const unsigned int devDescSize,
unsigned char* const devType);

Parameters:

devIndex index to the target device

Function Reference

Dell Technologies Technical White Paper

devDesc character array to be populated with the description of
the target device

devDescSize size of the character array provided in devDesc
devType unsigned short to be populated with the device type

Inputs:
Accepts an index to the device

Outputs:

Populates a character array with the indexed device’s description
Populates an unsigned short with the device type

Returns:
LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices at the index
LFX_ERROR_BUFFSIZE if the character array provided was too small
LFX_FAILURE if some other error occurred
LFX_SUCCESS If the function is successful

4.9 LFX_GetNumLights
This function returns the number of Alienware AlienFX lights attached to a device in the system.

Prototype:
LFX_RESULT LFX_GetNumLights(const unsigned int devIndex,

unsigned int* const numLights);

Parameters:

devIndex Index to the device
numLights Unsigned integer to be populated with the number of

lights at the device index

Inputs:
Accepts an index to the device

Outputs:

Populates an unsigned integer with the current number of lights attached to the device at the given
index

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices at the index
LFX_ERROR_NOLIGHTS if no lights are available at the device index provided
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.10 LFX_GetLightDescription
This function gets the description of a light attached to the system.

Syntax:
LFX_RESULT LFX_GetLightDescription(const unsigned int devIndex,

const unsigned int lightIndex, char* const lightDesc,
const unsigned int lightDescSize);

Parameters:

Function Reference

Dell Technologies Technical White Paper

devIndex Index to the target device
lightIndex Index to the target light
lightDesc Character array to be populated with the description of

the target light
lightDescSize Size of the character array provided in lightDesc

Inputs:

Accepts an index to the device
Accepts an index to the light

Outputs:

Populates a character array with the indexed light’s description

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices at the index
LFX_ERROR_NOLIGHTS if no lights are available at the device index provided
LFX_ERROR_BUFFSIZE if the character array provided was too small
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.11 LFX_GetLightLocation
This function gets the location of a light attached to the system.

Syntax:
LFX_RESULT LFX_GetLightLocation(const unsigned int devIndex,

const unsigned int lightIndex, PLFX_POSITION const lightLoc);

Parameters:

devIndex Index to the target device
lightIndex Index to the target light
lightLoc Pointer to an LFX_POSITION structure to be populated

with the light location

Inputs:

Accepts an index to the device
Accepts an index to the light

Outputs:

Populates an LFX_POSITION structure with the indexed light’s location

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices at the index
LFX_ERROR_NOLIGHTS if no lights are available at the device index provided
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

Function Reference

Dell Technologies Technical White Paper

4.12 LFX_GetLightColor
This function gets the color of a light attached to the system. This function provides the current color stored in

the active state. It does not necessarily represent the color of the physical light. To ensure that the returned

value represents the state of the physical light, call this function immediately after a call to LFX_Update.

Syntax:
LFX_RESULT LFX_GetLightColor(const unsigned int devIndex,

const unsigned int lightIndex, PLFX_COLOR const lightCol);

Parameters:

devIndex Index to the target device
lightIndex Index to the target light
lightCol Pointer to an LFX_COLOR structure to be populated

with the light location

Inputs:
Accepts an index to the device
Accepts an index to the light

Outputs:

Populates an LFX_COLOR structure with the indexed light’s color

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices at the index
LFX_ERROR_NOLIGHTS if no lights are available at the device index provided
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.13 LFX_SetLightColor
This function submits a light command into the command queue, which sets the current color of a light to the

provided color value. This function changes the current color stored in active state since the last reset. It does

not immediately update the physical light settings, instead requires a call to LFX_Update.

Syntax:
LFX_RESULT LFX_SetLightColor(const unsigned int devIndex,

const unsigned int lightIndex, const PLFX_COLOR lightCol);

Parameters:

devIndex Index to the target device
lightIndex Index to the target light
lightCol Pointer to an LFX_COLOR structure to be populated

with the light location

Inputs:

Accepts an index to the device
Accepts an index to the light
Accepts a pointer to an LFX_COLOR structure

Outputs:

None

Function Reference

Dell Technologies Technical White Paper

Returns:
LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NODEVS if there are no devices at the index
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.14 LFX_Light
This function submits a light command into the command queue, which sets the current color of any light

within the provided location mask to the provided color setting. Like LFX_SetLightColor, these settings are

changed in the active state and must be submitted with a call to LFX_Update. Location mask is a 32-bit field,

where each of the first 27 bits represents a zone in the virtual cube representing the system. The color is

packed into a 32-bit value as ARGB, with the alpha value corresponding to brightness.

Syntax:
LFX_RESULT LFX_Light(const unsigned int locationMask,

const unsigned int colorVal);
Parameters:

locationMask 32-bit location mask. See the defined values in the
header file (LFXDecl.h)

colorVal 32-bit color value

Inputs:
Accepts a 32-bit location mask.
Accepts a 32-bit packed color value

Outputs:

None

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NOLIGHTS if no lights were found at the location mask specified
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.15 LFX_SetLightActionColor
This function sets the primary color and an action type to a light. It changes the current color and action type

stored in the active state since the last LFX_Reset() call. It does not immediately update the physical light

settings, but instead requires a call to LFX_Update(). If the action type is a morph, then the secondary color

for the action is black.

Syntax:
LFX_RESULT LFX_SetLightActionColor(const unsigned int devIndex,

const unsigned int lightIndex, const unsigned int actionType,
const PLFX_COLOR primaryColor);

Parameters:

devIndex Index to the target device
lightIndex Index to the target light
actionType Action type
primaryColor Pointer to an LFX_COLOR structure with the desired

color

Function Reference

Dell Technologies Technical White Paper

Inputs:

Accepts an index to the device, an index to the light, an action type (LFX_ACTION_MORPH,
LFX_ACTION_PULSE, LFX_ACTION_COLOR), and a new primary LFX_COLOR value

Outputs:

None

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.16 LFX_SetLightActionColorEx
This function sets the primary and secondary colors and an action type to a light. It changes the current color

and action type stored in the active state since the last LFX_Reset() call. It does not immediately update the

physical light settings, but instead requires a call to LFX_Update(). If the action type is not a morph, then the

secondary color is ignored.

Syntax:
LFX_RESULT LFX_SetLightActionColorEx(const unsigned int devIndex,

const unsigned int lightIndex, const unsigned int actionType,
const PLFX_COLOR primaryColor, const PLFX_COLOR secondaryColor);

Parameters:

devIndex Index to the target device
lightIndex Index to the target light
actionType Action type
primaryColor Pointer to an LFX_COLOR structure with the desired

color
secondaryColor Pointer to an LFX_COLOR structure with the desired

secondary color

Inputs:
Accepts an index to the device, an index to the light, an action type (LFX_ACTION_MORPH,
LFX_ACTION_PULSE, LFX_ACTION_COLOR), and two LFX_COLOR values

Outputs:

None

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.17 LFX_ActionColor
This function sets the primary color and an action type for any devices with lights in a location. It changes the

current primary color and action type stored in the active state since the last LFX_Reset() call. It does not

immediately update the physical light settings, but instead requires a call to LFX_Update(). If the action type is

a morph, then the secondary color for the action is black. Location mask is a 32-bit field, where each of the

Function Reference

Dell Technologies Technical White Paper

first 27 bits represents a zone in the virtual cube representing the system. The color is packed into a 32-bit

value as ARGB, with the alpha value corresponding to brightness.

Syntax:
LFX_RESULT LFX_ActionColor(const unsigned int locationMask,

const unsigned actionType, const unsigned int primaryColor);

Parameters:

locationMask 32-bit location mask. See the defined values in the
header file (LFXDecl.h)

actionType Action type
primaryColor 32-bit color value

Inputs:

Accepts a 32-bit location mask
Accepts a 32-bit packed color value

Outputs:
None

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NOLIGHTS if no lights were found at the location mask specified.
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.18 LFX_ActionColorEx
This function sets the primary and secondary color and an action type for any devices with lights in a location.

It changes the current primary and secondary color and action type stored in the active state since the last

LFX_Reset() call. It does not immediately update the physical light settings, but instead requires a call to

LFX_Update. If the action type is not a morph, then the secondary color is ignored. Location mask is a 32-bit

field, where each of the first 27 bits represents a zone in the virtual cube representing the system. The color is

packed into a 32-bit value as ARGB, with the alpha value corresponding to brightness.

Syntax:
LFX_RESULT LFX_ActionColorEx(const unsigned int locationMask,

const unsigned actionType, const unsigned int primaryColor,
const unsigned int secondaryColor);

Parameters:

locationMask 32-bit location mask. See the defined values in the
header file (LFXDecl.h)

actionType Action type
primaryColor 32-bit primary color value
secondaryColor 32-bit secondary color value

Inputs:

Accepts a 32-bit location mask
Accepts a 32-bit packed color value

Outputs:
None

Function Reference

Dell Technologies Technical White Paper

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_NOLIGHTS if no lights were found at the location mask specified.
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.19 LFX_SetTiming
This function changes the current tempo or timing to be used for the next actions. It does NOT immediately

update the physical light settings, but instead requires a call to LFX_Update(). The timing is a value between

minimum and maximum tempo allowed for each device. If a value is lower than minimum or greater than

maximum is entered, then the value is readjusted to those extremes.

Note: This function has been deprecated

Syntax:

LFX_RESULT LFX_SetTiming(const int timing);

Parameters:

timing 32-bit timing value in milliseconds

Inputs:

Accepts a 32-bit timing value

Outputs:
None

Returns:

LFX_ERROR_NOINIT if the system is not initialized
LFX_FAILURE if some other error occurred
LFX_SUCCESS if the function is successful

4.20 LFX_GetVersion
This function gets the version of the SDK installed in the system.

Syntax:

LFX_RESULT LFX_GetVersion(char* const version,
const unsigned int versionSize);

Parameters:

version character array to be populated with the version
versionSize size of the character array provided in version

Inputs:
Accepts the bugger and buffer size

Outputs:

Populates a character array with the SDK version

Function Reference

Dell Technologies Technical White Paper

Returns:
LFX_ERROR_NOINIT if the system is not initialized
LFX_ERROR_BUFFSIZE if the character array provided was too small
LFX_FAILURE if some other error occurred
LFX_SUCCESS If the function is successful

Note: If the LFX_GetVersion function is not found then the SDK version will be 1.0 or 2.x

FAQs

Dell Technologies Technical White Paper

A FAQs

Q: Where I can find SDK documentation, examples, header files and/or DLLs for testing?

A: The SDK is deployed in the system through AWCC installation. Please check location in SDK 5.2 content.

Q: How can an app check if the AlienFX SDK is installed?

A: Confirm that LightFX.dll is present in the Windows System folder.

Q: Should the app installer distribute SDK’s DLLs and/or any SDK related items?

A: No. App installer should not distribute SDK’s DLLs or any SDK related items. By distributing the DLLs, the

app lighting implementation will not function.

Q: Why is function LFX_xxxx not working anymore?

A: Even when AlienFX SDK is kept backwards-compatible at function level, some functions can be

deprecated if there is a very low usage of the function or the function became obsolete at architecture level.

See deprecated function section for a list of functions and items deprecated

Q: How frequently should the app send update commands?

A: For optimal performance follow guidelines in multithreading section.

Q: Should I control LEDs individually or as a whole?

A: When trying to set the same system color, use the recommended function to address all LEDs instead of

addressing each one individually. Treating the lighting system as a whole is always preferable. The

recommended function to address the LEDs is LFX_Light with LFX_All mask in the location parameter. This

combination has the best performance. Of course, the SDK allows you to send commands to individual LEDs,

but developers need to take in consideration performance effect on system with 4 LEDs compared to one with

100+ LEDs. Also, this is affected by how fast the update loop is. It is more efficient to send a command every

100ms than every 20ms, especially if the change time is faster than what a user can perceive visually.

Q: Can the development be done in old Alienware system with Alienware Command Center 4.x or older?

A: No. Only development using Alienware Command Center 5.2 or newer is supported.

Q: Does the development done using SDK 5.2 affect final users using old SDKs?

A: No. AlienFX SDK 5.2 is backwards compatible with old SDK versions.

Q: How can I use the SDK in Unity?

A: There is an AlienFX SDK wrapper maintained by Unity community, please contact your Alienware

Partnership Manager for more info.

Q: Is there a SDK wrapper for Unreal engine?

A: Yes, there is an AlienFX SDK wrapper for Unreal engine, please contact your Alienware Partnership

Manager for more info.

Troubleshooting

Dell Technologies Technical White Paper

B Troubleshooting

• The app worked on SDK v1.x and v2.x, but it is not working with v5.2
Check that the app is not deploying LightFX.dll as part of its files.

• App cannot control light once it is installed in the user’s system
Check that the user has compatible HW and the latest Alienware Command Center for that HW is installed

• The chassis lighting works, but a peripheral’s lighting is not working
o Check that latest driver for the peripheral is installed in the system. Go to www.dell.com to download

latest version
o Check that the lighting system can be controlled through Alienware Command Center, if it cannot call

Alienware Support Service.

• Lighting is controlled in App is sending commands, but HW does not reflect the changes, or only
partially
o Is LFX_Update function being called? See function reference in LFX_Update.
o Is the app sending commands too fast and/or addressing each LED individually?

▪ SDK does guarantee that each command will affect the hardware, as some commands can be
discarded. If this is the case, the app developer should try to reduce the amount of commands
being sent by increasing delay between them or addressing all LEDs at once using LFX_Light
function. See section on Plug and Play and LFX_Light function for more info.

▪ Also, the developer should bear in mind that not all HW is the same when sending the commands.
It is not the same addressing individual LEDs in a system with 4 LEDS than in the system with 100+
LEDS

• The app is crashing during development
Check that the specs from system requirement section are followed and that the LightFX.dll used is the one
deployed by Alienware Command Center 5.2

http://www.dell.com/
https://www.dell.com/support/incidents-online/us/en/19/contactus/dynamic?ref=contactus

