-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathAnova Test.txt
66 lines (66 loc) · 4.03 KB
/
Anova Test.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
Anova Test Results
____________________________________________________________________________________________________
Claim_Cause
df sum_sq mean_sq F PR(>F)
Claim_Cause 4.0 3.605310 0.901328 15.825175 7.069156e-13
Residual 4996.0 284.548659 0.056955 NaN NaN
____________________________________________________________________________________________________
Claim_Date
df sum_sq mean_sq F PR(>F)
Claim_Date 2.0 0.135213 0.067606 1.173178 0.309467
Residual 4998.0 288.018756 0.057627 NaN NaN
____________________________________________________________________________________________________
Claim_Report_Type
df sum_sq mean_sq F PR(>F)
Claim_Report_Type 3.0 0.108038 0.036013 0.624745 0.59895
Residual 4997.0 288.045931 0.057644 NaN NaN
____________________________________________________________________________________________________
Education
df sum_sq mean_sq F PR(>F)
Education 1.0 0.006322 0.006322 0.109677 0.740526
Residual 4999.0 288.147647 0.057641 NaN NaN
____________________________________________________________________________________________________
Employment_Status
df sum_sq mean_sq F PR(>F)
Employment_Status 4.0 0.504234 0.126059 2.189428 0.067612
Residual 4996.0 287.649735 0.057576 NaN NaN
____________________________________________________________________________________________________
Fraudulent_Claim
df sum_sq mean_sq F PR(>F)
Fraudulent_Claim 1.0 2.881540e+02 2.881540e+02 4.153441e+32 0.0
Residual 4999.0 3.468165e-27 6.937717e-31 NaN NaN
____________________________________________________________________________________________________
Gender
df sum_sq mean_sq F PR(>F)
Gender 1.0 6.426167 6.426167 114.026408 2.467379e-26
Residual 4999.0 281.727802 0.056357 NaN NaN
____________________________________________________________________________________________________
Location
df sum_sq mean_sq F PR(>F)
Location 2.0 0.237900 0.118950 2.064881 0.126942
Residual 4998.0 287.916069 0.057606 NaN NaN
____________________________________________________________________________________________________
Marital_Status
df sum_sq mean_sq F PR(>F)
Marital_Status 2.0 1.123106 0.561553 9.778189 0.000058
Residual 4998.0 287.030863 0.057429 NaN NaN
____________________________________________________________________________________________________
State_Code
df sum_sq mean_sq F PR(>F)
State_Code 4.0 0.302328 0.075582 1.311812 0.263018
Residual 4996.0 287.851641 0.057616 NaN NaN
____________________________________________________________________________________________________
Vehicle_Class
df sum_sq mean_sq F PR(>F)
Vehicle_Class 5.0 6.377695 1.275539 22.611263 1.681957e-22
Residual 4995.0 281.776274 0.056412 NaN NaN
____________________________________________________________________________________________________
Vehicle_Model
df sum_sq mean_sq F PR(>F)
Vehicle_Model 3.0 0.030205 0.010068 0.174615 0.913617
Residual 4997.0 288.123765 0.057659 NaN NaN
____________________________________________________________________________________________________
Vehicle_Size
df sum_sq mean_sq F PR(>F)
Vehicle_Size 2.0 0.110599 0.055300 0.959536 0.383141
Residual 4998.0 288.043370 0.057632 NaN NaN