-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathuacqr.py
704 lines (533 loc) · 37.9 KB
/
uacqr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn_quantile import RandomForestQuantileRegressor, SampleRandomForestQuantileRegressor, KNeighborsQuantileRegressor
from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier
from sklearn.base import clone
from sklearn.metrics import f1_score, balanced_accuracy_score
from scipy.stats import norm, uniform, beta, iqr, mode
import math
from functools import partial
from sklearn.model_selection import RandomizedSearchCV
from sklearn.linear_model import QuantileRegressor, LinearRegression
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
import copy
from scipy.special import expit, logit
from lightgbm import LGBMRegressor
from scipy.spatial.distance import cdist
from catboost import CatBoostRegressor
from helper import generate_data, interval_score_loss, randomized_conformal_cutoffs, select_column_per_row, average_coverage, average_interval_width
from helper import sample_binning_model, QuantileBandwidthModel, QuantileRegressionNN, corr_coverage_widths, hsic_coverage_widths, wsc
from helper import CatBoostWrapper
class uacqr():
def __init__(self, model_params=dict(),
B=100, q_lower=5, q_upper=95, alpha=0.1, transform=None, inv_transform=None,
model_type='rfqr', bootstrapping_for_uacqrp=False, random_state=42,
uacqrs_agg='std', oracle_g=None, randomized_conformal=False,
subsample=1, sample_rfqr=False, extraneous_quantiles = ['mean'],
uacqrs_bagging=False, double_bootstrapping=False):
'''
inputs:
model_params (dict): variables to pass into the model class
B (int): number of bootstrapped runs or analogous for heuristic methods
q_lower (float): target lower conditional quantile for quantile regression. Between 0 and 100. Default is 5
q_upper (float): target upper conditional quantile for quantile regression. Between 0 and 100. Default is 95
alpha (float): target miscoverage rate, between 0 and 1
model_type (str): type of model for quantile regression. Options: neural_net, rfqr, linear, lightgbm, knn, catboost
random_state (int): random state for bootstrapping data and passed to model
uacqrs_agg (str): either 'std' for standard deviation or 'iqr' for Innerquartile Range
randomized_conformal (bool): use randomized conformal cutoffs to ensure exact 90% coverage
extraneous_quantiles (list): if using neural_net, models these quantiles in addition to, e.g., 0.05 and 0.95. 'mean' uses MSE
'''
if transform is None:
def transform(x):
return x
if inv_transform is None:
def inv_transform(x):
return x
np.random.seed(random_state)
quantiles=[q_lower, q_upper]
if uacqrs_agg =='iqr':
uacqrs_agg = iqr
if (model_type == 'neural_net') and (model_params.get('dropout',0)==0) and not(model_params.get('epoch_model_tracking',False)):
model_params["epoch_model_tracking"] = True
elif (model_type == 'neural_net') and (model_params.get('dropout',0)>0) and not(model_params.get('epoch_model_tracking',False)):
print("Will use dropout to generate B ensemble members. Set model_params[``epoch_model_tracking''] = True to use epoch-based heuristic instead")
if q_upper <=1:
print("Check units for q_upper, q_lower")
q_lower = q_lower * 100
q_upper = q_upper * 100
self.model_params = model_params.copy()
self.B = B
self.q_lower = q_lower
self.q_upper = q_upper
self.alpha = 0.1
self.transform = transform
self.inv_transform = inv_transform
self.model_type = model_type
self.bootstrapping_for_uacqrp = bootstrapping_for_uacqrp
self.random_state = random_state
self.uacqrs_agg = uacqrs_agg
self.oracle_g = oracle_g
self.randomized_conformal = randomized_conformal
self.subsample = subsample
self.sample_rfqr = sample_rfqr
self.extraneous_quantiles = extraneous_quantiles
self.uacqrs_bagging = uacqrs_bagging
self.double_bootstrapping = double_bootstrapping
def fit(self, x_train, y_train):
self.x_train = x_train
self.y_train = y_train
if not(self.bootstrapping_for_uacqrp) and (self.model_type not in ['rfqr','neural_net', 'catboost']):
raise Exception("Cannot use Fast UACQR for models other than RFQR, CatBoost, and Neural Net")
self.uacqrp_model_params = self.model_params.copy()
if not self.bootstrapping_for_uacqrp and (self.model_type=='rfqr'):
self.uacqrp_model_params["n_estimators"] = 1
if not(self.double_bootstrapping):
self.uacqrp_model_params["bootstrap"] = False
self.models_B = []
for b in range(self.B):
b_idxs = np.random.choice(y_train.shape[0], size=int(y_train.shape[0]*self.subsample), replace=True)
if isinstance(x_train, pd.DataFrame):
x_train_b = x_train.iloc[b_idxs]
y_train_b = y_train.iloc[b_idxs]
else:
x_train_b = x_train[b_idxs]
y_train_b = y_train[b_idxs]
if self.model_type=='rfqr':
if self.sample_rfqr:
model_b = SampleRandomForestQuantileRegressor(q=[self.q_lower/100, self.q_upper/100], random_state=self.random_state+b,
n_jobs=-1, **self.uacqrp_model_params)
else:
model_b = RandomForestQuantileRegressor(q=[self.q_lower/100, self.q_upper/100], random_state=self.random_state+b,
n_jobs=-1, **self.uacqrp_model_params)
model_b.fit(x_train_b, y_train_b)
elif self.model_type=='linear':
model_b_lower = QuantileRegressor(quantile = self.q_lower/100, **self.uacqrp_model_params)
model_b_upper = QuantileRegressor(quantile = self.q_upper/100, **self.uacqrp_model_params)
model_b_lower.fit(x_train_b, y_train_b)
model_b_upper.fit(x_train_b, y_train_b)
model_b = [model_b_lower, model_b_upper]
elif self.model_type=='lightgbm':
model_b_lower = LGBMRegressor(objective='quantile', metric='quantile', boosting_type='gbdt',
alpha=self.q_lower/100, n_jobs=-1, random_state=self.random_state+b, **self.uacqrp_model_params)
model_b_upper = LGBMRegressor(objective='quantile', metric='quantile', boosting_type='gbdt',
alpha=self.q_upper/100, n_jobs=-1, random_state=self.random_state+b, **self.uacqrp_model_params)
model_b_lower.fit(x_train_b, y_train_b)
model_b_upper.fit(x_train_b, y_train_b)
model_b = [model_b_lower, model_b_upper]
elif self.model_type=='sample_binning':
model_b = sample_binning_model()
model_b.fit(x_train_b, y_train_b)
elif self.model_type == 'bandwidth':
model_b = QuantileBandwidthModel(quantiles=[self.q_lower/100, self.q_upper/100], **self.uacqrp_model_params)
model_b.fit(x_train_b, y_train_b)
elif self.model_type == 'knn':
model_b = KNeighborsQuantileRegressor(q=[self.q_lower/100, self.q_upper/100], **self.uacqrp_model_params)
model_b.fit(x_train_b, y_train_b)
elif (self.model_type == 'neural_net') and self.bootstrapping_for_uacqrp:
self.modeled_quantiles = self.extraneous_quantiles.copy()
self.modeled_quantiles.insert(0, self.q_lower/100)
self.modeled_quantiles.append(self.self.q_upper/100)
model_b = QuantileRegressionNN(quantiles=self.modeled_quantiles,
random_state=self.random_state+b, **self.uacqrp_model_params)
model_b.fit(x_train_b, y_train_b)
elif self.model_type =='neural_net' and not(self.bootstrapping_for_uacqrp):
break
elif self.model_type =='ls':
model_b = LinearRegression(n_jobs=-1)
model_b.fit(x_train_b, y_train_b)
self.sigmahat = np.mean(np.square(model_b.predict(self,x_train)-self.y_train))**0.5
elif self.model_type =='catboost' and self.bootstrapping_for_uacqrp:
print("Not implemented yet to use boostrapping_for_uacqrp=True with CatBoost")
elif self.model_type =='catboost' and not(self.bootstrapping_for_uacqrp):
break
self.models_B.append(model_b)
if (self.model_type == 'neural_net') and not(self.bootstrapping_for_uacqrp):
self.modeled_quantiles = self.extraneous_quantiles.copy()
self.modeled_quantiles.insert(0, self.q_lower/100)
self.modeled_quantiles.append(self.q_upper/100)
nn_model = QuantileRegressionNN(quantiles=self.modeled_quantiles,
random_state=self.random_state, **self.model_params)
nn_model.fit(x_train, y_train)
self.nn_model = nn_model
if (self.model_type == 'catboost') and not(self.bootstrapping_for_uacqrp):
catboost_model_lower = CatBoostRegressor(loss_function=f'Quantile:alpha={self.q_lower/100}', random_state=self.random_state,
verbose=False, **self.model_params)
catboost_model_upper = CatBoostRegressor(loss_function=f'Quantile:alpha={self.q_upper/100}', random_state=self.random_state,
verbose=False, **self.model_params)
catboost_model_lower.fit(x_train, y_train)
catboost_model_upper.fit(x_train, y_train)
self.catboost_model = [catboost_model_lower, catboost_model_upper]
if self.B != catboost_model_lower.tree_count_:
print("B != number of boosting rounds. Overriding to B = number of boosting rounds")
self.B = min(catboost_model_lower.tree_count_, catboost_model_upper.tree_count_)
if catboost_model_lower.tree_count_ != catboost_model_upper.tree_count_:
print("Different number of boosting rounds for upper and lower quantile regressors. Overriding B to be the minimum of the two")
self.models_B = [CatBoostWrapper(self.catboost_model, t) for t in range(self.B)]
if not(self.bootstrapping_for_uacqrp):
if self.model_type=='rfqr':
self.model_params_cqr = self.model_params.copy()
self.model_params_cqr['n_estimators'] =self.B
if not(self.double_bootstrapping):
self.model_params_cqr["bootstrap"] = True
self.cqr_base_model = RandomForestQuantileRegressor(q=[self.q_lower/100, self.q_upper/100], random_state=self.random_state,
n_jobs=-1, **self.model_params_cqr)
self.cqr_base_model.fit(x_train, y_train)
elif self.model_type=='neural_net':
self.cqr_base_model = self.nn_model
elif self.model_type == 'catboost':
self.cqr_base_model = CatBoostWrapper(self.catboost_model)
else:
print("model not implemented yet for non-median cqr")
def calibrate(self, x_calib, y_calib, inject_noise=False, cond_exp=False, noise_sd_fn=False):
n1 = x_calib.shape[0]
calib_sorted_q_lower_ests = self.__predict_B_sorted(x_calib, lower = True)
calib_sorted_q_lower_ests_df, scores_lower = self.__uacqrp_scores(y_calib, n1, calib_sorted_q_lower_ests, lower=True)
calib_sorted_q_upper_ests = self.__predict_B_sorted(x_calib, lower = False)
calib_sorted_q_upper_ests_df, scores_upper = self.__uacqrp_scores(y_calib, n1, calib_sorted_q_upper_ests, lower=False)
if self.bootstrapping_for_uacqrp:
cqr_scores_upper = self.transform(calib_sorted_q_upper_ests_df['truth']) - self.transform(calib_sorted_q_upper_ests_df[int(self.B/2)])
cqr_scores_lower = self.transform(calib_sorted_q_lower_ests_df[int(self.B/2)]) - self.transform(calib_sorted_q_upper_ests_df['truth'])
calib_interval_widths = self.transform(calib_sorted_q_upper_ests_df[int(self.B/2)]) - self.transform(calib_sorted_q_lower_ests_df[int(self.B/2)])
else:
cqr_scores_upper = self.transform(calib_sorted_q_upper_ests_df['truth']) - self.transform(self.cqr_base_model.predict(x_calib)[-1])
cqr_scores_lower = self.transform(self.cqr_base_model.predict(x_calib)[0]) - self.transform(calib_sorted_q_upper_ests_df['truth'])
calib_interval_widths = self.transform(self.cqr_base_model.predict(x_calib)[-1]) - self.transform(self.cqr_base_model.predict(x_calib)[0])
uacqrs_spread_upper = calib_sorted_q_upper_ests_df.iloc[:,:-2].agg(self.uacqrs_agg, axis=1)
uacqrs_spread_lower = calib_sorted_q_lower_ests_df.iloc[:,:-2].agg(self.uacqrs_agg, axis=1)
if self.oracle_g:
cqr_model_lower_calib = self.cqr_base_model.predict(x_calib)[0]
cqr_model_upper_calib = self.cqr_base_model.predict(x_calib)[-1]
true_quantile_lower = cond_exp(x_calib) - norm.ppf(self.q_upper/100, 0, noise_sd_fn(x_calib))
true_quantile_upper = cond_exp(x_calib) + norm.ppf(self.q_upper/100, 0, noise_sd_fn(x_calib))
uacqrs_spread_lower = np.abs(cqr_model_lower_calib - true_quantile_lower)
uacqrs_spread_upper = np.abs(cqr_model_upper_calib - true_quantile_upper)
self.cond_exp = cond_exp
self.noise_sd_fn = noise_sd_fn
if inject_noise:
noise_upper_variance = calib_sorted_q_upper_ests_df.iloc[:,:-2].agg(self.uacqrs_agg, axis=1).var() * inject_noise
noise_lower_variance = calib_sorted_q_lower_ests_df.iloc[:,:-2].agg(self.uacqrs_agg, axis=1).var() * inject_noise
noise_upper = np.random.normal(size=calib_sorted_q_upper_ests_df.shape[0], scale=noise_upper_variance**0.5)
noise_lower = np.random.normal(size=calib_sorted_q_lower_ests_df.shape[0], scale=noise_lower_variance**0.5)
uacqrs_spread_upper = uacqrs_spread_upper + noise_upper
uacqrs_spread_lower = uacqrs_spread_lower + noise_lower
uacqrs_spread_upper.loc[uacqrs_spread_upper<0] = 0
uacqrs_spread_lower.loc[uacqrs_spread_lower<0] = 0
self.inject_noise = inject_noise
if self.uacqrs_bagging:
uacqrs_scores_upper = self.transform(calib_sorted_q_upper_ests_df['truth']) - self.transform(calib_sorted_q_upper_ests_df[int(self.B/2)])
uacqrs_scores_lower = self.transform(calib_sorted_q_lower_ests_df[int(self.B/2)]) - self.transform(calib_sorted_q_upper_ests_df['truth'])
uacqrs_scores_upper = uacqrs_scores_upper.div(uacqrs_spread_upper + 1e-05)
uacqrs_scores_lower = uacqrs_scores_lower.div(uacqrs_spread_lower + 1e-05)
else:
uacqrs_scores_upper = cqr_scores_upper.div(uacqrs_spread_upper + 1e-05)
uacqrs_scores_lower = cqr_scores_lower.div(uacqrs_spread_lower + 1e-05)
cqrr_scores_upper = cqr_scores_upper.div(calib_interval_widths + 1e-05)
cqrr_scores_lower = cqr_scores_lower.div(calib_interval_widths + 1e-05)
scores = pd.DataFrame({"upper" : scores_upper, "lower" : scores_lower})
cqr_scores = pd.DataFrame({"upper" : cqr_scores_upper, "lower" : cqr_scores_lower})
uacqrs_scores = pd.DataFrame({"upper" : uacqrs_scores_upper, "lower" : uacqrs_scores_lower})
cqrr_scores = pd.DataFrame({"upper" : cqrr_scores_upper, "lower" : cqrr_scores_lower})
cqr_scores["combined"] = cqr_scores.max(axis=1)
uacqrs_scores["combined"] = uacqrs_scores.max(axis=1)
cqrr_scores["combined"] = cqrr_scores.max(axis=1)
scores["combined"] = scores.max(axis=1)
self.scores = scores
self.cqr_scores = cqr_scores
self.uacqrs_scores = uacqrs_scores
self.cqrr_scores = cqrr_scores
self.score_threshold = scores["combined"].sort_values(ascending=True).iloc[math.ceil((1-self.alpha)*(n1+1))-1]
self.cqr_score_threshold = cqr_scores["combined"].sort_values(ascending=True).iloc[math.ceil((1-self.alpha)*(n1+1))-1]
self.uacqrs_score_threshold = uacqrs_scores["combined"].sort_values(ascending=True).iloc[math.ceil((1-self.alpha)*(n1+1))-1]
self.cqrr_score_threshold = cqrr_scores["combined"].sort_values(ascending=True).iloc[math.ceil((1-self.alpha)*(n1+1))-1]
if self.randomized_conformal:
print("Warning: score threshold attributes at this point are not randomized. They will be after making predictions")
def predict(self, x_test):
if len(x_test.shape)==1:
x_test = x_test.reshape(-1,1)
if self.randomized_conformal:
self.score_threshold = randomized_conformal_cutoffs(self.scores['combined'], x_test.shape[0], alpha=self.alpha).astype(int)
self.cqr_score_threshold = randomized_conformal_cutoffs(self.cqr_scores['combined'], x_test.shape[0], alpha=self.alpha)
self.uacqrs_score_threshold = randomized_conformal_cutoffs(self.uacqrs_scores['combined'], x_test.shape[0], alpha=self.alpha)
self.cqrr_score_threshold = randomized_conformal_cutoffs(self.cqrr_scores['combined'], x_test.shape[0], alpha=self.alpha)
q_lower_uacqrp = self.__predict_B_sorted(x_test, lower = True)
q_upper_uacqrp = self.__predict_B_sorted(x_test, lower=False)
uacqrs_spread_upper_test = pd.DataFrame(q_upper_uacqrp).iloc[:,:-1].agg(self.uacqrs_agg, axis=1)
uacqrs_spread_lower_test = pd.DataFrame(q_lower_uacqrp).iloc[:,:-1].agg(self.uacqrs_agg, axis=1)
if self.oracle_g:
cqr_model_lower = self.cqr_base_model.predict(x_test)[0]
cqr_model_upper = self.cqr_base_model.predict(x_test)[-1]
true_quantile_lower = self.cond_exp(x_test) - norm.ppf(self.q_upper/100, 0, self.noise_sd_fn(x_test))
true_quantile_upper = self.cond_exp(x_test) + norm.ppf(self.q_upper/100, 0, self.noise_sd_fn(x_test))
uacqrs_spread_lower_test = pd.Series(np.abs(cqr_model_lower - true_quantile_lower))
uacqrs_spread_upper_test = pd.Series(np.abs(cqr_model_upper - true_quantile_upper))
if self.inject_noise:
noise_upper_variance = uacqrs_spread_upper_test.var() * self.inject_noise
noise_lower_variance = uacqrs_spread_lower_test.var() * self.inject_noise
noise_upper = np.random.normal(size=uacqrs_spread_upper_test.shape[0], scale=noise_upper_variance**0.5)
noise_lower = np.random.normal(size=uacqrs_spread_lower_test.shape[0], scale=noise_lower_variance**0.5)
uacqrs_spread_upper_test = uacqrs_spread_upper_test + noise_upper
uacqrs_spread_lower_test = uacqrs_spread_lower_test + noise_lower
uacqrs_spread_upper_test.loc[uacqrs_spread_upper_test<0] = 0
uacqrs_spread_lower_test.loc[uacqrs_spread_lower_test<0] = 0
if self.bootstrapping_for_uacqrp:
cqr_model_lower = q_lower_uacqrp[:,int(self.B/2)]
cqr_model_upper = q_upper_uacqrp[:,int(self.B/2)]
else:
cqr_model_lower = self.cqr_base_model.predict(x_test)[0]
cqr_model_upper = self.cqr_base_model.predict(x_test)[-1]
test_interval_widths = cqr_model_upper - cqr_model_lower
self.test_y_lower = select_column_per_row(q_lower_uacqrp, self.score_threshold)
self.test_y_lower_cqr = self.inv_transform(self.transform(cqr_model_lower) - self.cqr_score_threshold)
self.test_y_lower_uacqrs = self.inv_transform(self.transform(cqr_model_lower) - self.uacqrs_score_threshold*(uacqrs_spread_lower_test.values + 1e-05))
self.test_y_lower_cqrr = self.inv_transform(self.transform(cqr_model_lower) - self.cqrr_score_threshold*(test_interval_widths + 1e-05))
self.test_y_lower_median = q_lower_uacqrp[:,int(self.B/2)]
self.test_y_lower_base = cqr_model_lower
self.test_y_upper = select_column_per_row(q_upper_uacqrp, self.score_threshold)
self.test_y_upper_cqr = self.inv_transform(self.transform(cqr_model_upper) + self.cqr_score_threshold)
self.test_y_upper_uacqrs = self.inv_transform(self.transform(cqr_model_upper) + self.uacqrs_score_threshold*(uacqrs_spread_upper_test.values + 1e-05))
self.test_y_upper_cqrr = self.inv_transform(self.transform(cqr_model_upper) + self.cqrr_score_threshold*(test_interval_widths + 1e-05))
self.test_y_upper_median = q_upper_uacqrp[:,int(self.B/2)]
self.test_y_upper_base = cqr_model_upper
bounds_df = pd.DataFrame(data={"UACQR-P_lower":self.test_y_lower, "UACQR-P_upper":self.test_y_upper,
"UACQR-S_lower":self.test_y_lower_uacqrs, "UACQR-S_upper":self.test_y_upper_uacqrs,
"CQR_lower":self.test_y_lower_cqr, "CQR_upper":self.test_y_upper_cqr,
"CQR-r_lower":self.test_y_lower_cqrr, "CQR-r_upper":self.test_y_upper_cqrr,
"Base_lower":self.test_y_lower_base, "Base_upper":self.test_y_upper_base})
bounds_df.columns = pd.MultiIndex.from_product((['UACQR-P','UACQR-S','CQR','CQR-r','Base'],['lower','upper']))
return bounds_df
def evaluate(self, x_test, y_test, oqr_metrics=False):
self.x_test = x_test
self.y_test = y_test
bounds_df = self.predict(x_test)
methods = ['UACQR-P','UACQR-S','CQR','CQR-r','Base']
metrics = dict()
metrics["interval_score_loss"] = {method: interval_score_loss(bounds_df[method]["upper"].values, bounds_df[method]["lower"].values,
y_test, alpha=self.alpha).mean() for method in methods}
metrics["test_coverage"] = {method: average_coverage(bounds_df[method]["upper"].values, bounds_df[method]["lower"].values,
y_test) for method in methods}
metrics["average_length_test"] = {method: average_interval_width(bounds_df[method]["upper"].values, bounds_df[method]["lower"].values)
for method in methods}
if oqr_metrics:
metrics["oqr_corr"] = {method: corr_coverage_widths(bounds_df[method]["upper"].values, bounds_df[method]["lower"].values,
y_test) for method in methods}
metrics["oqr_hsic"] = {method: hsic_coverage_widths(bounds_df[method]["upper"].values, bounds_df[method]["lower"].values,
y_test) for method in methods}
metrics["oqr_wsc"] = {method: wsc(x_test, y_test, bounds_df[method]["upper"].values, bounds_df[method]["lower"].values)
for method in methods}
for outer_key, inner_dict in metrics.items():
for inner_key, inner_value in inner_dict.items():
setattr(self, f"{inner_key.replace('-','').lower()}_{outer_key}", inner_value)
return metrics
def calculate_conditional_coverage(self, cond_exp=None, noise_sd_fn=None, plot=True, sorting_column=0, round_to=2, title=None,
included_methods=['UACQR-P','UACQR-S','CQR', 'CQR-r','Base Estimator'],
column_by_feature_importance=False, ecdf=False, metric='conditional_coverage'):
if not(hasattr(self,"test_cover_rates")) and cond_exp and metric=='conditional_coverage':
miscover_below_rate = norm.cdf(self.test_y_lower, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_below_rate_cqr = norm.cdf(self.test_y_lower_cqr, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_below_rate_uacqrs = norm.cdf(self.test_y_lower_uacqrs, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_below_rate_cqrr = norm.cdf(self.test_y_lower_cqrr, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
if not(self.bootstrapping_for_uacqrp):
miscover_below_rate_base = norm.cdf(self.test_y_lower_base, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
else:
miscover_below_rate_base = norm.cdf(self.test_y_lower_median, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_above_rate = 1 - norm.cdf(self.test_y_upper, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_above_rate_cqr = 1 - norm.cdf(self.test_y_upper_cqr, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_above_rate_uacqrs = 1 - norm.cdf(self.test_y_upper_uacqrs, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
miscover_above_rate_cqrr = 1 - norm.cdf(self.test_y_upper_cqrr, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
if not(self.bootstrapping_for_uacqrp):
miscover_above_rate_base = 1 - norm.cdf(self.test_y_upper_base, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
else:
miscover_above_rate_base = 1 - norm.cdf(self.test_y_upper_median, loc = cond_exp(self.x_test), scale=noise_sd_fn(self.x_test))
self.test_cover_rates = 1 - miscover_below_rate - miscover_above_rate
self.test_cover_rates_cqr = 1 - miscover_below_rate_cqr - miscover_above_rate_cqr
self.test_cover_rates_uacqrs = 1 - miscover_below_rate_uacqrs - miscover_above_rate_uacqrs
self.test_cover_rates_cqrr = 1 - miscover_below_rate_cqrr - miscover_above_rate_cqrr
self.test_cover_rates_base = 1 - miscover_below_rate_base - miscover_above_rate_base
else:
if metric == 'conditional_coverage':
self.test_cover_rates = (self.test_y_lower<=self.y_test)&(self.test_y_upper>=self.y_test)
self.test_cover_rates_cqr = (self.test_y_lower_cqr<=self.y_test)&(self.test_y_upper_cqr>=self.y_test)
self.test_cover_rates_uacqrs = (self.test_y_lower_uacqrs<=self.y_test)&(self.test_y_upper_uacqrs>=self.y_test)
self.test_cover_rates_cqrr = (self.test_y_lower_cqrr<=self.y_test)&(self.test_y_upper_cqrr>=self.y_test)
self.test_cover_rates_base = (self.test_y_lower_base<=self.y_test)&(self.test_y_upper_base>=self.y_test)
elif metric == 'average_length_test':
self.test_cover_rates = self.test_y_upper - self.test_y_lower
self.test_cover_rates_cqr = self.test_y_upper_cqr - self.test_y_lower_cqr
self.test_cover_rates_uacqrs = self.test_y_upper_uacqrs - self.test_y_lower_uacqrs
self.test_cover_rates_cqrr = self.test_y_upper_cqrr - self.test_y_lower_cqrr
self.test_cover_rates_base = self.test_y_upper_base - self.test_y_lower_base
x_df = pd.DataFrame(self.x_test)
if cond_exp:
x_df[sorting_column] = x_df[sorting_column].round(round_to)
else:
if column_by_feature_importance:
sorting_column = np.argmax(self.self.cqr_base_model.feature_importances_)
if ecdf:
x_df[sorting_column] = x_df[sorting_column].rank(pct=True).round(round_to)
else:
x_df[sorting_column] = x_df[sorting_column].rank(pct=True).round(round_to)
x_df['UACQR-P'] = self.test_cover_rates
x_df['UACQR-S'] = self.test_cover_rates_uacqrs
x_df['CQR'] = self.test_cover_rates_cqr
x_df['CQR-r'] = self.test_cover_rates_cqrr
x_df['Base Estimator'] = self.test_cover_rates_base
if not(title):
title = 'Conditional Coverage'
self.conditional_coverage = x_df.groupby(sorting_column)[included_methods].mean()
if plot:
self.conditional_coverage.plot(title=title,
color=['tab:orange', 'tab:red', 'tab:green', 'tab:brown','tab:purple'])
if metric == 'condtional_coverage':
plt.axhline(y = 0.9, color = 'tab:blue', linestyle='--', alpha=1)
plt.xlabel('$X_{\\cdot,'+str(sorting_column+1)+'}$')
def plot(self, cond_exp, noise_sd_fn, feature_for_x_axis=0):
colors = {'UACQR-P':'tab:orange', 'CQR':'tab:green', 'UACQR-S':'tab:red', 'Base Estimator':'tab:purple',
'CQR-m with oracle info':'tab:brown','UACQR-S with oracle info':'tab:pink', 'Truth':'tab:blue',
'Median Estimator':'tab:purple', 'RFQR':'tab:purple', 'CQR-r':'tab:brown'}
idxs = self.x_test[:,feature_for_x_axis].argsort()
x_column = self.x_test[idxs,feature_for_x_axis]
fig, ax = plt.subplots()
ax.scatter(x_column, self.y_test[idxs], color='0.5', alpha=0.4)
ax.plot(x_column, (cond_exp(self.x_test) - norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
label='Truth', linewidth=3, color=colors['Truth'])
ax.plot(x_column, self.test_y_lower[idxs], label='UACQR-P',
alpha=1, color=colors['UACQR-P'])
ax.plot(x_column, self.test_y_lower_cqr[idxs], label='CQR',
alpha=1, color=colors['CQR'])
ax.plot(x_column, self.test_y_lower_uacqrs[idxs], label='UACQR-S',
alpha=1, color=colors['UACQR-S'])
ax.plot(x_column, self.test_y_lower_cqrr[idxs], label='CQR-r',
alpha=1, color=colors['CQR-r'])
if self.bootstrapping_for_uacqrp:
ax.plot(x_column, self.test_y_lower_median[idxs], label='Median Estimator',
alpha=1, color=colors['Median Estimator'])
else:
ax.plot(x_column, self.test_y_lower_base[idxs], label='Base Estimator',
alpha=1, color=colors['Base Estimator'])
ax.plot(x_column, (cond_exp(self.x_test) + norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
label='Truth', linewidth=3)
ax.plot(x_column, self.test_y_upper[idxs], label='UACQR-P',
alpha=1, color=colors['UACQR-P'])
ax.plot(x_column, self.test_y_upper_cqr[idxs], label='CQR',
alpha=1, color=colors['CQR'])
ax.plot(x_column, self.test_y_upper_uacqrs[idxs], label='UACQR-S',
alpha=1, color=colors['UACQR-S'])
ax.plot(x_column, self.test_y_upper_cqrr[idxs], label='CQR-r',
alpha=1, color=colors['CQR-r'])
if self.bootstrapping_for_uacqrp:
ax.plot(x_column, self.test_y_upper_median[idxs], label='Median Estimator',
alpha=1, color=colors['Median Estimator'])
else:
ax.plot(x_column, self.test_y_upper_base[idxs], label='Base Estimator',
alpha=1, color=colors['Base Estimator'])
handles, labels = plt.gca().get_legend_handles_labels()
by_label = dict(zip(labels, handles))
plt.legend(by_label.values(), by_label.keys())
def plot_simple(self, cond_exp, noise_sd_fn, feature_for_x_axis=0, sharey=True, suptitle=None,
ylabel = '$Y$', xlabel = '$X$', expanded=False):
colors = {'UACQR-P':'tab:orange', 'CQR':'tab:green', 'UACQR-S':'tab:red', 'Base Estimator':'tab:purple',
'CQR-m with oracle info':'tab:brown','UACQR-S with oracle info':'tab:pink', 'Truth':'tab:blue',
'Median Estimator':'tab:purple', 'RFQR':'tab:purple', 'CQR-r':'tab:brown'}
idxs = self.x_test[:,feature_for_x_axis].argsort()
idxs_train = self.x_train[:,feature_for_x_axis].argsort()
x_column = self.x_test[idxs,feature_for_x_axis]
x_train_column = self.x_train[idxs_train,feature_for_x_axis]
plt.rcParams['font.size'] = 18
if expanded:
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, sharey=sharey, figsize=(15,12))
plt.setp(((ax1, ax2), (ax3, ax4)), ylim=(-4,4))
else:
fig, (ax1, ax2) = plt.subplots(1, 2, sharey=sharey, figsize=(10,3))
plt.setp((ax1, ax2), ylim=(-4,4))
fig.subplots_adjust(top=0.75)
fig.suptitle(suptitle, fontsize=13)
ax1.scatter(x_train_column, self.y_train[idxs_train], color='0.1', alpha=1, s=10, label='Training Samples')
ax1.fill_between(x_column, (cond_exp(self.x_test) - norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
(cond_exp(self.x_test) + norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
label='Oracle', color=colors['Truth'], alpha=0.3)
ax1.fill_between(x_column, self.test_y_lower_cqr[idxs], self.test_y_upper_cqr[idxs], label='CQR',
color=colors['CQR'], alpha=0.3)
ax1.legend(loc='upper left')
ax1.set_ylabel(ylabel)
ax1.set_xlabel(xlabel)
ax1.set_title('Existing method: CQR')
ax2.scatter(x_train_column, self.y_train[idxs_train], color='0.1', alpha=1, s=10, label='Training Samples')
ax2.fill_between(x_column, (cond_exp(self.x_test) - norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
(cond_exp(self.x_test) + norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
label='Oracle',color=colors['Truth'], alpha=0.3)
ax2.fill_between(x_column, self.test_y_lower[idxs], self.test_y_upper[idxs], label='UACQR-P',
color=colors['UACQR-P'], alpha=0.3)
ax2.legend(loc='upper left')
ax2.set_xlabel(xlabel)
ax2.set_title('Proposal: UACQR-P')
if expanded:
ax3.scatter(x_train_column, self.y_train[idxs_train], color='0.1', alpha=1, s=10, label='Training Samples')
ax3.fill_between(x_column, (cond_exp(self.x_test) - norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
(cond_exp(self.x_test) + norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
label='Oracle', color=colors['Truth'], alpha=0.3)
ax3.fill_between(x_column, self.test_y_lower_cqrr[idxs], self.test_y_upper_cqrr[idxs], label='CQR-r',
color=colors['CQR-r'], alpha=0.3)
ax3.legend(loc='upper left')
ax3.set_ylabel(ylabel)
ax3.set_xlabel(xlabel)
ax3.set_title('Existing method: CQR-r')
ax4.scatter(x_train_column, self.y_train[idxs_train], color='0.1', alpha=1, s=10, label='Training Samples')
ax4.fill_between(x_column, (cond_exp(self.x_test) - norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
(cond_exp(self.x_test) + norm.ppf(self.q_upper/100, 0, noise_sd_fn(self.x_test)))[idxs],
label='Oracle',color=colors['Truth'], alpha=0.3)
ax4.fill_between(x_column, self.test_y_lower_uacqrs[idxs], self.test_y_upper_uacqrs[idxs], label='UACQR-S',
color=colors['UACQR-S'], alpha=0.3)
ax4.legend(loc='upper left')
ax4.set_xlabel(xlabel)
ax4.set_title('Proposal: UACQR-S')
plt.rcParams['font.size'] = 10
def __predict_individual_model(self, x_calib, model,lower=True):
if lower:
i = 0
else:
i = -1
if self.model_type=='rfqr':
return model.predict(x_calib)[i]
elif self.model_type=='catboost':
return model.predict(x_calib)[i]
elif self.model_type=='linear':
return model[i].predict(x_calib)
elif self.model_type=='lightgbm':
return model[i].predict(x_calib)
elif self.model_type=='sample_binning' or self.model_type=='bandwidth' or self.model_type=='knn':
return model.predict(x_calib)[i]
elif (self.model_type == 'neural_net') and self.bootstrapping_for_uacqrp:
return model.predict(x_calib)[i]
elif self.model_type == 'ls' and lower:
return model.predict(x_calib) + norm.ppf(self.q_lower/100) * self.sigmahat
elif self.model_type == 'ls' and not(lower):
return model.predict(x_calib) + norm.ppf(self.q_upper/100) * self.sigmahat
def __predict_B_sorted(self, x_test, lower=True):
q_lower_uacqrp = np.zeros((len(x_test),self.B+1))
for t,model in enumerate(self.models_B):
q_lower_uacqrp[:,t] = self.__predict_individual_model(x_test, model, lower=lower)
if self.model_type == 'neural_net' and not(self.bootstrapping_for_uacqrp):
q_lower_uacqrp = self.nn_model.predict(x_test, ensembling=self.B+1)[0 if lower else -1]
q_lower_uacqrp[:,self.B] = -np.inf if lower else np.inf
q_lower_uacqrp.sort(axis=1)
if lower:
q_lower_uacqrp = q_lower_uacqrp[:,::-1]
return q_lower_uacqrp
def __uacqrp_scores(self, y_calib, n1, calib_sorted_ests, lower=True):
calib_sorted_q_ests_df = pd.DataFrame(data=calib_sorted_ests, index=range(n1), columns=range(self.B+1))
if isinstance(y_calib, pd.Series):
calib_sorted_q_ests_df['truth'] = y_calib.values
else:
calib_sorted_q_ests_df['truth'] = y_calib
def find_minimal_bound(series):
if lower:
return (series <= series['truth']).idxmax()
else:
return (series >= series['truth']).idxmax()
scores = calib_sorted_q_ests_df.apply(find_minimal_bound, axis=1, raw=False)
return calib_sorted_q_ests_df, scores