-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathl2g_nerf.py
421 lines (378 loc) · 20.9 KB
/
l2g_nerf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import numpy as np
import os,sys,time
import torch
import torch.nn.functional as torch_F
import torchvision
import torchvision.transforms.functional as torchvision_F
import tqdm
from easydict import EasyDict as edict
import visdom
import matplotlib.pyplot as plt
import util,util_vis
from util import log,debug
from . import nerf
import camera
import roma
# ============================ main engine for training and evaluation ============================
class Model(nerf.Model):
def __init__(self,opt):
super().__init__(opt)
def build_networks(self,opt):
super().build_networks(opt)
if opt.camera.noise:
# pre-generate synthetic pose perturbation
so3_noise = torch.randn(len(self.train_data),3,device=opt.device)*opt.camera.noise_r
t_noise = torch.randn(len(self.train_data),3,device=opt.device)*opt.camera.noise_t
self.graph.pose_noise = torch.cat([camera.lie.so3_to_SO3(so3_noise),t_noise[...,None]],dim=-1) # [...,3,4]
self.graph.warp_embedding = torch.nn.Embedding(len(self.train_data),opt.arch.embedding_dim).to(opt.device)
self.graph.warp_mlp = localWarp(opt).to(opt.device)
pose_GT = self.train_data.get_all_camera_poses(opt).to(opt.device)
# add synthetic pose perturbation to all training data
if opt.data.dataset=="blender":
pose = pose_GT
if opt.camera.noise:
pose = camera.pose.compose([pose, self.graph.pose_noise])
else: pose = self.graph.pose_eye[None].repeat(len(self.train_data),1,1)
# use Embedding so it could be checkpointed
self.graph.optimised_training_poses = torch.nn.Embedding(len(self.train_data),12,_weight=pose.view(-1,12)).to(opt.device)
# auto near/far for blender dataset
if opt.data.dataset=="blender":
idx_range = torch.arange(len(self.train_data),dtype=torch.long,device=opt.device)
idx_X,idx_Y = torch.meshgrid(idx_range,idx_range)
self.graph.idx_grid = torch.stack([idx_X,idx_Y],dim=-1).view(-1,2)
if opt.error_map_size:
self.graph.error_map = torch.ones([len(self.train_data), opt.error_map_size*opt.error_map_size], dtype=torch.float).to(opt.device)
def setup_optimizer(self,opt):
super().setup_optimizer(opt)
optimizer = getattr(torch.optim,opt.optim.algo)
self.optim_pose = optimizer([dict(params=self.graph.warp_embedding.parameters(),lr=opt.optim.lr_pose)])
self.optim_pose.add_param_group(dict(params=self.graph.warp_mlp.parameters(),lr=opt.optim.lr_pose))
# set up scheduler
if opt.optim.sched_pose:
scheduler = getattr(torch.optim.lr_scheduler,opt.optim.sched_pose.type)
if opt.optim.lr_pose_end:
assert(opt.optim.sched_pose.type=="ExponentialLR")
opt.optim.sched_pose.gamma = (opt.optim.lr_pose_end/opt.optim.lr_pose)**(1./opt.max_iter)
kwargs = { k:v for k,v in opt.optim.sched_pose.items() if k!="type" }
self.sched_pose = scheduler(self.optim_pose,**kwargs)
def train_iteration(self,opt,var,loader):
self.optim_pose.zero_grad()
if opt.optim.warmup_pose:
# simple linear warmup of pose learning rate
self.optim_pose.param_groups[0]["lr_orig"] = self.optim_pose.param_groups[0]["lr"] # cache the original learning rate
self.optim_pose.param_groups[0]["lr"] *= min(1,self.it/opt.optim.warmup_pose)
loss = super().train_iteration(opt,var,loader)
self.optim_pose.step()
if opt.optim.warmup_pose:
self.optim_pose.param_groups[0]["lr"] = self.optim_pose.param_groups[0]["lr_orig"] # reset learning rate
if opt.optim.sched_pose: self.sched_pose.step()
self.graph.nerf.progress.data.fill_(self.it/opt.max_iter)
if opt.nerf.fine_sampling:
self.graph.nerf_fine.progress.data.fill_(self.it/opt.max_iter)
return loss
@torch.no_grad()
def validate(self,opt,ep=None):
pose,pose_GT = self.get_all_training_poses(opt)
_,self.graph.sim3 = self.prealign_cameras(opt,pose,pose_GT)
super().validate(opt,ep=ep)
@torch.no_grad()
def log_scalars(self,opt,var,loss,metric=None,step=0,split="train"):
super().log_scalars(opt,var,loss,metric=metric,step=step,split=split)
if split=="train":
# log learning rate
lr = self.optim_pose.param_groups[0]["lr"]
self.tb.add_scalar("{0}/{1}".format(split,"lr_pose"),lr,step)
# compute pose error
if split=="train" and opt.data.dataset in ["blender","llff"]:
pose,pose_GT = self.get_all_training_poses(opt)
pose_aligned,_ = self.prealign_cameras(opt,pose,pose_GT)
error = self.evaluate_camera_alignment(opt,pose_aligned,pose_GT)
self.tb.add_scalar("{0}/error_R".format(split),error.R.mean(),step)
self.tb.add_scalar("{0}/error_t".format(split),error.t.mean(),step)
@torch.no_grad()
def visualize(self,opt,var,step=0,split="train"):
super().visualize(opt,var,step=step,split=split)
if opt.visdom:
if split=="val":
pose,pose_GT = self.get_all_training_poses(opt)
pose_aligned,_ = self.prealign_cameras(opt,pose,pose_GT)
util_vis.vis_cameras(opt,self.vis,step=step,poses=[pose_aligned,pose_GT])
@torch.no_grad()
def get_all_training_poses(self,opt):
# get ground-truth (canonical) camera poses
pose_GT = self.train_data.get_all_camera_poses(opt).to(opt.device)
pose = self.graph.optimised_training_poses.weight.data.detach().clone().view(-1,3,4)
return pose,pose_GT
@torch.no_grad()
def prealign_cameras(self,opt,pose,pose_GT):
# compute 3D similarity transform via Procrustes analysis
center = torch.zeros(1,1,3,device=opt.device)
center_pred = camera.cam2world(center,pose)[:,0] # [N,3]
center_GT = camera.cam2world(center,pose_GT)[:,0] # [N,3]
try:
sim3 = camera.procrustes_analysis(center_GT,center_pred)
except:
print("warning: SVD did not converge...")
sim3 = edict(t0=0,t1=0,s0=1,s1=1,R=torch.eye(3,device=opt.device))
# align the camera poses
center_aligned = (center_pred-sim3.t1)/[email protected]()*sim3.s0+sim3.t0
R_aligned = pose[...,:3]@sim3.R.t()
t_aligned = (-R_aligned@center_aligned[...,None])[...,0]
pose_aligned = camera.pose(R=R_aligned,t=t_aligned)
return pose_aligned,sim3
@torch.no_grad()
def evaluate_camera_alignment(self,opt,pose_aligned,pose_GT):
# measure errors in rotation and translation
R_aligned,t_aligned = pose_aligned.split([3,1],dim=-1)
R_GT,t_GT = pose_GT.split([3,1],dim=-1)
R_error = camera.rotation_distance(R_aligned,R_GT)
t_error = (t_aligned-t_GT)[...,0].norm(dim=-1)
error = edict(R=R_error,t=t_error)
return error
@torch.no_grad()
def evaluate_full(self,opt):
self.graph.eval()
# evaluate rotation/translation
pose,pose_GT = self.get_all_training_poses(opt)
pose_aligned,self.graph.sim3 = self.prealign_cameras(opt,pose,pose_GT)
error = self.evaluate_camera_alignment(opt,pose_aligned,pose_GT)
print("--------------------------")
print("rot: {:8.3f}".format(np.rad2deg(error.R.mean().cpu())))
print("trans: {:10.5f}".format(error.t.mean()))
print("--------------------------")
# dump numbers
quant_fname = "{}/quant_pose.txt".format(opt.output_path)
with open(quant_fname,"w") as file:
for i,(err_R,err_t) in enumerate(zip(error.R,error.t)):
file.write("{} {} {}\n".format(i,err_R.item(),err_t.item()))
# evaluate novel view synthesis
super().evaluate_full(opt)
@torch.enable_grad()
def evaluate_test_time_photometric_optim(self,opt,var):
# use another se3 Parameter to absorb the remaining pose errors
var.se3_refine_test = torch.nn.Parameter(torch.zeros(1,6,device=opt.device))
optimizer = getattr(torch.optim,opt.optim.algo)
optim_pose = optimizer([dict(params=[var.se3_refine_test],lr=opt.optim.lr_pose)])
iterator = tqdm.trange(opt.optim.test_iter,desc="test-time optim.",leave=False,position=1)
for it in iterator:
optim_pose.zero_grad()
var.pose_refine_test = camera.lie.se3_to_SE3(var.se3_refine_test)
var = self.graph.forward(opt,var,mode="test-optim")
loss = self.graph.compute_loss(opt,var,mode="test-optim")
loss = self.summarize_loss(opt,var,loss)
loss.all.backward()
optim_pose.step()
iterator.set_postfix(loss="{:.3f}".format(loss.all))
return var
@torch.no_grad()
def generate_videos_pose(self,opt):
self.graph.eval()
fig = plt.figure(figsize=(10,10) if opt.data.dataset=="blender" else (16,8))
cam_path = "{}/poses".format(opt.output_path)
os.makedirs(cam_path,exist_ok=True)
ep_list = []
for ep in range(0,opt.max_iter+1,opt.freq.ckpt):
# load checkpoint (0 is random init)
if ep!=0:
try: util.restore_checkpoint(opt,self,resume=ep)
except: continue
# get the camera poses
pose,pose_ref = self.get_all_training_poses(opt)
if opt.data.dataset in ["blender","llff"]:
pose_aligned,_ = self.prealign_cameras(opt,pose,pose_ref)
pose_aligned,pose_ref = pose_aligned.detach().cpu(),pose_ref.detach().cpu()
dict(
blender=util_vis.plot_save_poses_blender,
llff=util_vis.plot_save_poses,
)[opt.data.dataset](opt,fig,pose_aligned,pose_ref=pose_ref,path=cam_path,ep=ep)
else:
pose = pose.detach().cpu()
util_vis.plot_save_poses(opt,fig,pose,pose_ref=None,path=cam_path,ep=ep)
ep_list.append(ep)
plt.close()
# write videos
print("writing videos...")
list_fname = "{}/temp.list".format(cam_path)
with open(list_fname,"w") as file:
for ep in ep_list: file.write("file {}.png\n".format(ep))
cam_vid_fname = "{}/poses.mp4".format(opt.output_path)
os.system("ffmpeg -y -r 4 -f concat -i {0} -pix_fmt yuv420p {1} >/dev/null 2>&1".format(list_fname,cam_vid_fname))
os.remove(list_fname)
# ============================ computation graph for forward/backprop ============================
class Graph(nerf.Graph):
def __init__(self,opt):
super().__init__(opt)
self.nerf = NeRF(opt)
if opt.nerf.fine_sampling:
self.nerf_fine = NeRF(opt)
self.pose_eye = torch.eye(3,4).to(opt.device)
def get_pose(self,opt,var,mode=None):
if mode=="train":
# add the pre-generated pose perturbations
if opt.data.dataset=="blender":
if opt.camera.noise:
var.pose_noise = self.pose_noise[var.idx]
pose = camera.pose.compose([var.pose, var.pose_noise])
else: pose = var.pose
else: pose = self.pose_eye[None]
# add learnable pose correction
batch_size = len(var.idx)
if opt.error_map_size:
num_points = var.ray_idx.shape[1]
camera_cords_grid_3D = camera.gather_camera_cords_grid_3D(opt,batch_size,intr=var.intr,ray_idx=var.ray_idx).detach()
else:
num_points = len(var.ray_idx)
camera_cords_grid_3D = camera.get_camera_cords_grid_3D(opt,batch_size,intr=var.intr,ray_idx=var.ray_idx).detach()
camera_cords_grid_2D = camera_cords_grid_3D[...,:2]
embedding = self.warp_embedding.weight[var.idx,None,:].expand(-1,num_points,-1)
local_se3_refine = self.warp_mlp(opt,torch.cat((camera_cords_grid_2D,embedding),dim=-1))
local_pose_refine = camera.lie.se3_to_SE3(local_se3_refine)
local_pose = camera.pose.compose([local_pose_refine, pose[:,None,...]])
return local_pose
elif mode in ["val","eval","test-optim"]:
# align test pose to refined coordinate system (up to sim3)
sim3 = self.sim3
center = torch.zeros(1,1,3,device=opt.device)
center = camera.cam2world(center,var.pose)[:,0] # [N,3]
center_aligned = (center-sim3.t0)/[email protected]*sim3.s1+sim3.t1
R_aligned = var.pose[...,:3]@self.sim3.R
t_aligned = (-R_aligned@center_aligned[...,None])[...,0]
pose = camera.pose(R=R_aligned,t=t_aligned)
if opt.optim.test_photo and mode!="val":
pose = camera.pose.compose([var.pose_refine_test, pose])
else: pose = var.pose
return pose
def forward(self,opt,var,mode=None):
# rescale the size of the scene condition on the pose
if opt.data.dataset=="blender":
depth_min,depth_max = opt.nerf.depth.range
position = camera.Pose().invert(self.optimised_training_poses.weight.data.detach().clone().view(-1,3,4))[...,-1]
diameter = ((position[self.idx_grid[...,0]]-position[self.idx_grid[...,1]]).norm(dim=-1)).max()
depth_min_new = (depth_min/(depth_max+depth_min))*diameter
depth_max_new = (depth_max/(depth_max+depth_min))*diameter
opt.nerf.depth.range = [depth_min_new, depth_max_new]
# render images
batch_size = len(var.idx)
if opt.nerf.rand_rays and mode in ["train"]:
# sample rays for optimization
if opt.error_map_size:
sample_weight = self.error_map + 2*self.error_map.mean(-1,keepdim=True) # 1/3 importance + 2/3 random
var.ray_idx_coarse = torch.multinomial(sample_weight, opt.nerf.rand_rays//batch_size, replacement=False) # [B, N], but in [0, opt.error_map_size*opt.error_map_size)
inds_x, inds_y = var.ray_idx_coarse // opt.error_map_size, var.ray_idx_coarse % opt.error_map_size # `//` will throw a warning in torch 1.10... anyway.
sx, sy = opt.H / opt.error_map_size, opt.W / opt.error_map_size
inds_x = (inds_x * sx + torch.rand(batch_size, opt.nerf.rand_rays//batch_size, device=opt.device) * sx).long().clamp(max=opt.H - 1)
inds_y = (inds_y * sy + torch.rand(batch_size, opt.nerf.rand_rays//batch_size, device=opt.device) * sy).long().clamp(max=opt.W - 1)
var.ray_idx = inds_x * opt.W + inds_y
else:
var.ray_idx = torch.randperm(opt.H*opt.W,device=opt.device)[:opt.nerf.rand_rays//batch_size]# 3/3 random
local_pose = self.get_pose(opt,var,mode=mode)
ret = self.local_render(opt,local_pose,intr=var.intr,ray_idx=var.ray_idx,mode=mode) # [B,N,3],[B,N,1]
elif opt.nerf.rand_rays and mode in ["test-optim"]:
# sample random rays for optimization
var.ray_idx = torch.randperm(opt.H*opt.W,device=opt.device)[:opt.nerf.rand_rays//batch_size]
pose = self.get_pose(opt,var,mode=mode)
ret = self.render(opt,pose,intr=var.intr,ray_idx=var.ray_idx,mode=mode) # [B,N,3],[B,N,1]
else:
# render full image (process in slices)
pose = self.get_pose(opt,var,mode=mode)
ret = self.render_by_slices(opt,pose,intr=var.intr,mode=mode) if opt.nerf.rand_rays else \
self.render(opt,pose,intr=var.intr,mode=mode) # [B,HW,3],[B,HW,1]
var.update(ret)
return var
def compute_loss(self,opt,var,mode=None):
loss = edict()
batch_size = len(var.idx)
image = var.image.view(batch_size,3,opt.H*opt.W).permute(0,2,1)
if opt.nerf.rand_rays and mode in ["train","test-optim"]:
if opt.error_map_size:
image = torch.gather(image, 1, var.ray_idx[...,None].expand(-1,-1,3))
else:
image = image[:,var.ray_idx]
# compute image losses
if opt.loss_weight.render is not None:
render_error = ((var.rgb-image)**2).mean(-1)
loss.render = render_error.mean()
if mode in ["train"] and opt.error_map_size:
ema_error = 0.1 * torch.gather(self.error_map, 1, var.ray_idx_coarse) + 0.9 * render_error.detach()
self.error_map.scatter_(1, var.ray_idx_coarse, ema_error)
if opt.loss_weight.render_fine is not None:
assert(opt.nerf.fine_sampling)
loss.render_fine = self.MSE_loss(var.rgb_fine,image)
# global alignment
if mode in ["train"]:
source = torch.cat((var.camera_grid_3D,var.camera_center),dim=1)
target = torch.cat((var.grid_3D,var.center),dim=1)
R_global, t_global = roma.rigid_points_registration(target, source)
svd_poses = torch.cat((R_global,t_global[...,None]),-1)
self.optimised_training_poses.weight.data = svd_poses.detach().clone().view(-1,12)
if opt.loss_weight.global_alignment is not None:
loss.global_alignment = self.MSE_loss(target,camera.cam2world(source,svd_poses))
return loss
def local_render(self,opt,local_pose,intr=None,ray_idx=None,mode=None):
batch_size = len(local_pose)
if opt.error_map_size:
camera_grid_3D = camera.gather_camera_cords_grid_3D(opt,batch_size,intr=intr,ray_idx=ray_idx).detach()
else:
camera_grid_3D = camera.get_camera_cords_grid_3D(opt,batch_size,intr=intr,ray_idx=ray_idx).detach()
camera_center = torch.zeros_like(camera_grid_3D) # [B,HW,3]
grid_3D = camera.cam2world(camera_grid_3D[...,None,:],local_pose)[...,0,:] # [B,HW,3]
center = camera.cam2world(camera_center[...,None,:],local_pose)[...,0,:] # [B,HW,3]
ray = grid_3D-center # [B,HW,3]
ret = edict(camera_grid_3D=camera_grid_3D, camera_center=camera_center, grid_3D=grid_3D, center=center) # [B,HW,K] use for global alignment
if opt.camera.ndc:
# convert center/ray representations to NDC
center,ray = camera.convert_NDC(opt,center,ray,intr=intr)
# render with main MLP
depth_samples = self.sample_depth(opt,batch_size,num_rays=ray.shape[1]) # [B,HW,N,1]
rgb_samples,density_samples = self.nerf.forward_samples(opt,center,ray,depth_samples,mode=mode)
rgb,depth,opacity,prob = self.nerf.composite(opt,ray,rgb_samples,density_samples,depth_samples)
ret.update(rgb=rgb,depth=depth,opacity=opacity) # [B,HW,K]
# render with fine MLP from coarse MLP
if opt.nerf.fine_sampling:
with torch.no_grad():
# resample depth acoording to coarse empirical distribution
depth_samples_fine = self.sample_depth_from_pdf(opt,pdf=prob[...,0]) # [B,HW,Nf,1]
depth_samples = torch.cat([depth_samples,depth_samples_fine],dim=2) # [B,HW,N+Nf,1]
depth_samples = depth_samples.sort(dim=2).values
rgb_samples,density_samples = self.nerf_fine.forward_samples(opt,center,ray,depth_samples,mode=mode)
rgb_fine,depth_fine,opacity_fine,_ = self.nerf_fine.composite(opt,ray,rgb_samples,density_samples,depth_samples)
ret.update(rgb_fine=rgb_fine,depth_fine=depth_fine,opacity_fine=opacity_fine) # [B,HW,K]
return ret
class NeRF(nerf.NeRF):
def __init__(self,opt):
super().__init__(opt)
self.progress = torch.nn.Parameter(torch.tensor(0.)) # use Parameter so it could be checkpointed
def positional_encoding(self,opt,input,L): # [B,...,N]
input_enc = super().positional_encoding(opt,input,L=L) # [B,...,2NL]
# coarse-to-fine: smoothly mask positional encoding for BARF
if opt.barf_c2f is not None:
# set weights for different frequency bands
start,end = opt.barf_c2f
alpha = (self.progress.data-start)/(end-start)*L
k = torch.arange(L,dtype=torch.float32,device=opt.device)
weight = (1-(alpha-k).clamp_(min=0,max=1).mul_(np.pi).cos_())/2
# apply weights
shape = input_enc.shape
input_enc = (input_enc.view(-1,L)*weight).view(*shape)
return input_enc
class localWarp(torch.nn.Module):
def __init__(self, opt):
super().__init__()
# point-wise se3 prediction
input_2D_dim = 2
self.mlp_warp = torch.nn.ModuleList()
L = util.get_layer_dims(opt.arch.layers_warp)
for li,(k_in,k_out) in enumerate(L):
if li==0: k_in = input_2D_dim+opt.arch.embedding_dim
if li in opt.arch.skip_warp: k_in += input_2D_dim+opt.arch.embedding_dim
linear = torch.nn.Linear(k_in,k_out)
self.mlp_warp.append(linear)
def forward(self,opt,uvf):
feat = uvf
for li,layer in enumerate(self.mlp_warp):
if li in opt.arch.skip_warp: feat = torch.cat([feat,uvf],dim=-1)
feat = layer(feat)
if li!=len(self.mlp_warp)-1:
feat = torch_F.relu(feat)
warp = feat
return warp