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1 Introduction

1.1 Purpose

This file contains the result of a survey of research in localization (June 2020) which aims to find compelling
alternatives to the current AMCL ROS 2 package [5]. The major requirements to satisfy are its ability
to work with 2D and 3D LiDAR data and its velocity.

1.2 AMCL Overview

|JAdaptive Monte-Carlo Localization (AMCL)|is a probabilistic localization system that differs itself from
the original [Monte-Carlo Localization (MCL)| by the usage of [Kullback-Leibler Distance (KLD)|sampling
[4], which uses the Kullback-Leibler Distance (or relative entropy) to measure the approximation error
in order to generate less samples when the uncertainty (reflected in the particle dispersion) is smaller
and more when it is bigger. That dynamic (or adaptive) number of particles is what gives this
enhancement its name.

This localization technique is based in a|Particle Filter (PF)|that, as explained by roboticsknowledge-
base.com [7], executes the following steps in a loop:

e Re-sampling: Replaces a random sample from the sample set according to the importance weights
of the samples. If the belief on the hypothesis represented by a particle is high, the chance of it
being replaced will be small (however, it could still happen).

e Sampling: Use the previous belief and the control information to sample the solution space. i.e.
generate new hypothesis of the current robot pose.

e Importance sampling: Compute the importance weights of each particle, which will be based
on the likelihood of the new measurement and what should be observed assuming the particle’s
hypothesis on the robot pose.

Further details on tricks and innovations in[PFs|can be found in the Sebastian THRUN’s paper | Particle
Filters in Robotics [11].

Regarding the strengths and weaknesses of Unlike [Kalman Filter (KF)tbased approaches,
since a particle filter is used, it is a multi-modal state estimator. However, the solution space must be
sampleable. i.e. small enough to sample it properly with an amount of discrete particles that can be
managed by the available hardware.



https://index.ros.org/p/nav2_amcl/
https://www.researchgate.net/publication/221619887_KLD-Sampling_Adaptive_Particle_Filters
https://roboticsknowledgebase.com/wiki/state-estimation/adaptive-monte-carlo-localization/
https://roboticsknowledgebase.com/wiki/state-estimation/adaptive-monte-carlo-localization/
http://robots.stanford.edu/papers/thrun.pf-in-robotics-uai02.pdf
http://robots.stanford.edu/papers/thrun.pf-in-robotics-uai02.pdf

2 Potential Alternatives

2.1 Normal Distributions Transform MCL (November 2013, 36 impact)

Oriented to industrial [Automatically Guided Vehicles (AGVs)) it prioritizes precision and repeatability.
The [Normal Distributions Transform MCL (NDT-MCL) [8] uses the [Normal Distributions Transform|
to represent both the map and the sensor data in the algorithm, relaxing the discretiza-
tion of the traditional algorithm. The authors evaluated it using offline data sets including real-world
environments and compare the results to the [AMCI] ones.

Before this work, traditional was used with Sampling (known as , achieving re-
peatability errors of around 6 cm, that was more reduced with scan matching, which only worked for
holonomic vehicles.

Instead of considering the measurement of each instant a set of N_t points (as is done in [MCL|and
[AMCLJ), NDT-MCT] [8] considers a set of N_zt normal distribution parameters (mean and covariance).
Since the sensor will have some noise and thus, the distribution associated with each measure will cover
a region of the grid map, N_zt is very likely to be way smaller than N_t. Moreover, would already
be a likelihood model of how likely is for an object to be in a certain location. In the case of the map, it
will be also a set of normal distribution parameters.

With this representation, the likelihood of an observation given a map and an state (robot pose),
can be computed to obtain a new distribution. However, in practice, the map cell corresponding to the
rotated and translated mean is found and, then, the algorithm will search the local neighborhood to find
the closest normal distribution to the computed mean. The paper also specifies how to compute the
weights of the particles and specifies the resampling approach they use. They assume a given state
initialization (mean and variance).

Regarding the tests, some of them were performed using a real robot in a 25x25 space and others,
using data sets. Experiments with different amounts of dynamic objects were performed. [AMCI] achieved
5.4 cm at its best, with errors increasing with the grid size of the map. [8] achieved 1.4 cm at
its best and 2.8 cm at its worst (being this last case with a cell size of 1.8 m).

As a more in-depth analysis, [AMCI]is very dependent on the map resolution and the error fluctuates
more. When introducing odometry perturbations or dynamic objects, the error also augments (in a
similar fashion as with static maps) with the cell sizes. Regarding 18], it has an almost
constant performance for static maps regardless the cell sizes. However, when introducing dynamics
objects, the error augments up to the ones obtained with [AMCL] and big cells, even it does not fluctuate
much when varying the map resolution. For odometry perturbations, the performance is quite similar to
the original test.

In conclusion, [8] seems a very feasible alternative to that may optimize the
memory requirements of the algorithm while improving its performance, specially with bigger maps that
require bigger cell sizes. However, the presence of dynamic objects will be a problem regardless the cell
size (see fig. 6 of the paper for reference).

Given the special interest of this proposal, based methods]has been researched. For
this purpose, lists from |Google Scholar| and ResearchGate| were used. The works on them that were
considered most relevant will be explained on the following sub-subsections.

2.1.1 Dual-Timescale NDT-MCL (May 2014, 20.2 impact, ICRA2014)

Compared with NDT-MCL] [§], |[Dual-Timescale NDT-MCL (DT-NDT-MCL)| [12] uses two maps, a static
map and a stort-term map. occupancy grid was used for the short-term map and it was utilized
only when and where the static map failed to give sufficient explanations. This method makes algo-



https://www.researchgate.net/publication/261352911_Normal_distributions_transform_Monte-Carlo_localization_NDT-MCL
https://scholar.google.se/scholar?hl=en&as_sdt=2005&cites=13731867732774515138&scipsc=
https://www.researchgate.net/publication/261352911_Normal_distributions_transform_Monte-Carlo_localization_NDT-MCL/citations
https://www.researchgate.net/publication/282017851_Localization_in_highly_dynamic_environments_using_dual-timescale_NDT-MCL

rithm provides equal performance as the original NDT-MCLJ [8] in stationary environments and superior
performance in dynamic environments with semi-static objects.

2.1.2 Comparison and Discussion of Observation Models (November 2018, 12 impact)

This paper |1] compares four observation models (LFM, based model, COM and PMoEP-based
model) developed for localization in highly dynamic environments.

e The LFM may correspond to dynamic obstacles and work in many cases, but it cannot correspond
to landmark removal and/or movement.

e The NDT cannot correspond to landmark removal, but can increase the estimation accuracy when
a high resolution ND map is used. However, the memory usage increases as the resolution increases.

e The COM can correspond to both dynamic obstacles and landmark removal. Additionally, its
computational complexity is identical to that of the LFM. We concluded that the COM is suitable
for localization in highly dynamic environments in terms of computational complexity and estimation
accuracy.

e The PMOoEP can accurately estimate a pose of an ego vehicle, even when the environment changes
significantly. However, the PMoEP has a drawback in terms of computation time, and an accelera-
tion method is required for use in practical situations.

Therefore, if there is enough time, it may be possible to use COM instead of the NDT method.

2.1.3 IRON (September 2015, 7 impact, IROS 2015)

This paper [9] introduced the IRON interest point detector and the IRON descriptor and illustrated how
they can be used to align NDT}maps with high accuracy and speed.

The C++ source code of the IRON keypoint detector and the IRON descriptor, together with the
complete registration algorithm can be downloaded at the |[website of the Technical University of Ilmenau.

2.2 Multi-Resolution Gaussian Mixture Maps (April 2017, 29 impact)

Multi-Resolution Gaussian Mixture Maps [14].
Too focused on self-driving cars? (road surface reflectivity). It seems it proposes a way to make maps
more compact (and how to use them for localization) rather than proposing an actual localization method.

2.3 L3-Net: Learned LiDAR Localization (September 2019, 14 impact)

L3-Net [6] is a learning-based LiDAR localization system that achieves centimeter-level localization accu-
racy comparable current (September 2019) hand-crafted state-of-the-art techniques. It uses several
INeural Networks (DNNs)l The authors collected multiple sequences for the testing dataset over the same
road and areas for testing purposes. It contains sequences with a year’s time interval, 360° LiDAR and
more than 380 km of real-traffic driving distributed in 6 different routes.

This approach substitutes the traditional modules of a localization algorithm in the following way:

1. Extract keypoints evaluated by their linearity and scattering (defined by the eigenvalues of the
neighbors of each point).


https://www.researchgate.net/publication/326586267_Toward_Localization-Based_Automated_Driving_in_Highly_Dynamic_Environments_Comparison_and_Discussion_of_Observation_Models
https://www.researchgate.net/publication/308808180_IRON_A_fast_interest_point_descriptor_for_robust_NDT-map_matching_and_its_application_to_robot_localization
https://www.tu-ilmenau.de/neurob/data-sets-code/iron/
https://www.researchgate.net/publication/315982721_Robust_LIDAR_localization_using_multiresolution_Gaussian_mixture_maps_for_autonomous_driving
https://www.researchgate.net/publication/336083754_L_3_-Net_Towards_Learning_based_LiDAR_Localization_for_Autonomous_Driving

2. A single mini-PointNet extracts feature descriptors to encode statistical properties of the points,
trained prioritizing robustness.

3. Usage of 3D convolutions (as already done in learning-based stereo vision) to improve the local-
ization accuracy.

4. The matching probabilities of all the dimensions are computed and, therefore, the optimal esti-
mation is obtained.

As an additional note, the motion dynamics (usually modeled with filtering method such as ,
are implicitly encapsulated by deep [Recursive Neural Networks (RNNs)|

The inputs are a pre-built 3D point cloud map and the online LiDAR point cloud. The LiDAR-
obtained point cloud is down-sampled with voxel grid. The dynamic objects are mostly removed from the
map using semantic segmentation provided by PointNet++. The framework will also take as an input a
predicted pose, usually generated by an [Inertial Measurement Unit (IMU)|or by the motion model of the
vehicle. The output will be the optimal offset between the final and the predicted pose.

The result was a system able to achieve errors between 3 and 5 cm in [Real-Time (RT)| processing
each time in 121.3 ms (with a GTX 1080 Ti GPU, an i7 9700K CPU and 16 GB of RAM).

In conclusion, this approach is quite focused on autonomous driving. It does not generalize to mobile
platforms, so some adaptations may be needed. It also seems to be opening the way to learning-based
approaches, so their trustability is yet to be proved (and its performance, improved). Overall, its behavior
is both accurate and fast, but its dependence in GPU makes it privative for its usage in robots that do
not have this hardware available.

2.4 PoseMap: 3D LiDAR Localization (October 2018, 4 impact)

PoseMap [3] is a long-term localization approach conceived for 3D LiDAR sensors. The method consists
in extracting feautres from the LiDAR measurements and matching them using a sliding window fashion.
It also allows replacing and adding local maps when necessary. They use a LiDAR and an IMU and
achieve robust localization results at 8 Hz in dynamic environments (industrial and off-road environments
during 18 months and 100 km without failure).

This localization method is based on C-SLAM |2, which will be explained next. For each LiDAR
scan, features (surfels) are extracted from the new point cloud and projected into the map following
the data obtained using an [IMU] and/or odometry. Next, the projected surfels are matched with those
already in the map with a|K-Nearest Neighbours (K-NN)| search, using the obtained correspondences to
build constraints for the optimization. Deviations from the [MU] measurements are penalized to ensure
smoothness. Continuity with the previous trajectory is enforced providing initial condition constraints.
The optimization is solved with an iterative re-weighted least squares in an M-estimator. For the loop
closures, whenever a significant translation or rotation is performed, a set of surfels is stored.

For the proposed localization method, a combination of local constraints (matching local features) and
matching between the local and the map features was used. Without using the constraints, the method
runs at more than 20 Hz, but the robustness to changes in the environment drops (e.g. vegetation
changes). Using a sliding window for the matching, the frequencies are between 4 and 10 Hz.

The method includes online map extensions and updates. If the map is left, the new discovered
features are added. The map nodes are continuously evaluated for major changes, being updated when a
substantial (and static) change occured.

As a conclusion, the paper seems to focus more in the map format and how to use it for localization
rather than innovating in localization techniques. This work feels like more oriented to extend/adapt



https://www.researchgate.net/publication/330582422_PoseMap_Lifelong_Multi-Environment_3D_LiDAR_Localization

a SLAM method to solve the localization problem (providing a higher update rate). The results seem
accurate, but only qualitative proof is shown.

2.5 RT 3D LiDAR Localization (December 2019, 9 impact)

This approach [15] consists in dividing the map in smaller point clouds to speed the registration and
improve the robustness and fuse several odometers in the PointLocalization method, optimizing the accu-
racy and frequency of the localization. The method provides state estimations at 20 Hz with accuracies of
around 10 cm. It has been tested for more than six months in a crowded factory and operated successfully
after more than 2000 km.

PointLocalization requires two sensor inputs, one being the current surrounding environment and
the other being any kind of odometry. In the paper, a Hall effect sensor is used as an encoder measuring
from a 36T gear, which allows to detect complete rotations and, thus, velocity. The velocity is provided
at 10 Hz, minimum rate required for the odometry input of the method.

After receiving the LiDAR and odometry messages, the current odometry is applied to the last Li-
DAR localization, providing a prediction of the robot’s pose. Another way of getting a prediction (if
odometry information is not available) is using the LiDAR momentum, which is done by computing the
transformation between the last two LIDAR measurements and assuming that it has been repeated. One
of those estimations will be used to determine the [Region of Interest (ROI){on the map that will be used
to match the current LiDAR input, which is created by expanding the (odometry or LIDAR momentum
based) estimated current pointcloud one meter. Finally, [[terative Closest Point (ICP)|is used to register
the source point cloud (current LiDAR scan) in the target point cloud (ROI|sub-map).

Finally, the odometry and LiDAR results are fused using the [Steady-State Approximation of Extended]
I[Kalman Filter (SSKF)|[13]. [13] is used instead of the traditional [Extended Kalman Filter (EKF )|
approach because the can only take measurements from the current state, while with this method,
delayed measurements may be used.

After the experimentation with the KITTI dataset, the authors show how the error is particularly
low at speeds between 20 and 30 km/h. They also proved that the method does not accumulate error
due to the odometry. The results when using real data of an industrial area show errors between 1 and
10 cm. The method provided localization results at 10 Hz, needing times between 0.01 and 0.1 seconds
to complete each cycle, with a clear peak between 0.04 and 0.06 s. As an additional note, they generate
the map using a graph-based SLAM method.

In conclusion, the method provides more than 10 poses each second with a high accuracy. A key part
of this method that could be extrapolated to other ones is how they use odometry or LIDAR momentum
generate the of the map to accelerate the matching.

3 Comparison and Conclusion

In Table [1] a quantitative short comparison between all the potential alternatives is shown, choosing as
the key elements the method’s accuracy and the rate at which they are capable of providing localization
results.

As can be appreciated, based methods (Subsection provides the lowest error and it
makes it possible to work with big grid sizes, being very versatile. However, the performance of the vanilla
decreases considerably when navigating in dynamic environments. The [DT-NDT-MCLJ| [12]
approaches improves the performance in environments with middle-sized dynamic objects, as explained
in their paper and visualized in this video. Moreover, [Interest point descriptor for RObust NDT-map]
matching (IRON)|detector and descriptor [9] can increase the speed and accuracy in matching NDT maps.



https://www.researchgate.net/publication/339560228_Real-Time_Environmentally-Robust_3D_LiDAR_Localization
https://www.youtube.com/watch?v=aLQM6g2GeTY

Method Error (cm) Rate (Hz) Additional Notes
Vanilla AMCL Jg—l[) 6 ? Vulnerable to size of grid cells
NDT-MCL (2.1 1.5-3 25 + Vulnerable to dynamic environments
DT-NDT-MCL (2.1.1 1.5-2.2 30 - 40 More robust for dynamic environments
IRON (2.1.3 2 5% More speed and accuracy in matching
Gauss. Maps (2.2 10 5-10 -
L3-Net (2.3 5 10 Learning-based, GPU required
PoseMap (2.4 - 8 Local AND local-map sliding window matching
RT (2.5 10 20 Best at 20 Km/h, ROI map matching

Table 1: Quantitative comparison between potential AMCL alternatives. The first rows correspond to
the baseline, the second group are the NDT-MCIL}based methods and the third show other alternatives.
* show that this rate is only for point cloud alignment

Regarding the non{NDT-MCI}based methods, the [RT] localization one, exposed in Subsection 2.5 is
capable of providing localization data at the highest frequency amongst the evaluated approaches. Its
cost is scarifying accuracy, raising the error up to 10 cm.

In conclusion, we consider that, given the already theoretically good results of we should
implement its vanilla version and, once it is done, consider adding further improvements such as:

e Improve performance in dynamic environments using beam skipping or the dual timescale

proposed in [DT-NDT-MCLJ [12].

e Improve the matching using the [RON| detector and descriptor [9).

e Improve the (re)sampling using the following considerations, extracted from the SLAM course
of the University of Freiburg [10]:

— Stochastic Universal Re-Sampling instead of the classical Roulette Wheel. |Lecture 11, min
00:21:00.

— Selectrive Re-Sampling, to avoid killing good hypothesis for small errors. Lecture 13, min
00:50:00.

— Multi-Modal/Two-Step Sampling, to enhance the multi-modal capabilities of It
consist in, instead of sampling over the closes t mode to the odometry mean, sampling a
Gaussian around the odometry mean and then moving each particle to its closest mode. [Lecture
13, min 01:11:40.

4 Contact

This contribution was done by LI Xin and TORRES CAMARA José M., while mentored by MACENSKI
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https://youtu.be/eAqAFSrTGGY?t=1260
https://youtu.be/3Yl2aq28LFQ?t=3000
https://youtu.be/3Yl2aq28LFQ?t=3000
https://youtu.be/3Yl2aq28LFQ?t=4295
https://youtu.be/3Yl2aq28LFQ?t=4295
https://www.linkedin.com/in/xin-li-1196331a0/
https://www.linkedin.com/in/jose-miguel-torres-camara/
https://www.linkedin.com/in/steve-macenski-41a985101/
https://www.linkedin.com/in/steve-macenski-41a985101/

Acronyms

AGYV Automatically Guided Vehicle.

AMCL Adaptive Monte-Carlo Localization.

DNN Deep Neural Network.

DT-NDT-MCL Dual-Timescale NDT-MCL. [0]
EKF Extended Kalman Filter. [{

ICP Iterative Closest Point. [{
IMU Inertial Measurement Unit. []

IRON Interest point descriptor for RObust NDT-map matching. [} [6]

K-NN K-Nearest Neighbours. [
KF Kalman Filter. []

KLD Kullback-Leibler Distance.
MCL Monte-Carlo Localization.

NDT Normal Distributions Transform.

NDT-MCL Normal Distributions Transform MCL. 6]
PF Particle Filter. [6]

RNN Recursive Neural Network. [4]
ROI Region of Interest.
RT Real-Time. [4] [0]

SSKF Steady-State Approximation of Extended Kalman Filter.
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