-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_loaders.py
63 lines (61 loc) · 2.65 KB
/
data_loaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
from torchvision import datasets, transforms
def get_data_loader(dataset, batch_size, train=True, shuffle=True, drop_last=True):
if dataset not in ('mnist', 'fmnist', 'cifar10', 'cifar100', 'svhn'):
raise NotImplementedError('Dataset not supported.')
if dataset == 'mnist':
tr = transforms.Compose([
transforms.ToTensor(),
])
d = datasets.MNIST('./data', train=train, transform=tr)
if dataset == 'fmnist':
tr = transforms.Compose([
transforms.ToTensor(),
])
d = datasets.FashionMNIST('./data', train=train, transform=tr)
elif dataset == 'cifar10':
if train:
tr = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# Line commented out in case we use adv. examples during training.
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
else:
tr = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
d = datasets.CIFAR10('./data', train=train, transform=tr)
elif dataset == 'cifar100':
if train:
tr = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
# Line commented out in case we use adv. examples during training.
# transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
else:
tr = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)),
])
d = datasets.CIFAR100('./data', train=train, transform=tr)
elif dataset == 'svhn':
if train:
tr = transforms.Compose([
transforms.ToTensor(),
# Line commented out in case we use adv. examples during training.
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
else:
tr = transforms.Compose([
transforms.ToTensor(),
# transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
split = 'train' if train else 'test'
d = datasets.SVHN('./data', split=split, transform=tr)
data_loader = torch.utils.data.DataLoader(d, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
return data_loader