-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathconfigure.py
84 lines (71 loc) · 3.85 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import sys
def parse_args():
"""
Parse input arguments
"""
parser = argparse.ArgumentParser()
# Data loading params
parser.add_argument("--train_path", default="SemEval2010_task8_all_data/SemEval2010_task8_training/TRAIN_FILE.TXT",
type=str, help="Path of train data")
parser.add_argument("--test_path", default="SemEval2010_task8_all_data/SemEval2010_task8_testing_keys/TEST_FILE_FULL.TXT",
type=str, help="Path of test data")
parser.add_argument("--max_sentence_length", default=90,
type=int, help="Max sentence length in data")
parser.add_argument("--dev_sample_percentage", default=0.1,
type=float, help="Percentage of the training data to use for validation")
# Model Hyper-parameters
# Embeddings
parser.add_argument("--embedding_path", default=None,
type=str, help="Path of pre-trained word embeddings (word2vec)")
parser.add_argument("--text_embedding_dim", default=300,
type=int, help="Dimensionality of word embedding (default: 300)")
parser.add_argument("--pos_embedding_dim", default=50,
type=int, help="Dimensionality of relative position embedding (default: 50)")
# CNN
parser.add_argument("--filter_sizes", default="2,3,4,5",
type=str, help="Comma-separated filter sizes (Default: 2,3,4,5)")
parser.add_argument("--num_filters", default=128,
type=int, help="Number of filters per filter size (Default: 128)")
# Misc
parser.add_argument("--desc", default="",
type=str, help="Description for model")
parser.add_argument("--dropout_keep_prob", default=0.5,
type=float, help="Dropout keep probability of output layer (default: 0.5)")
parser.add_argument("--l2_reg_lambda", default=1e-5,
type=float, help="L2 regularization lambda (default: 1e-5)")
# Training parameters
parser.add_argument("--batch_size", default=20,
type=int, help="Batch Size (default: 20)")
parser.add_argument("--num_epochs", default=100,
type=int, help="Number of training epochs (Default: 100)")
parser.add_argument("--display_every", default=10,
type=int, help="Number of iterations to display training information")
parser.add_argument("--evaluate_every", default=100,
type=int, help="Evaluate model on dev set after this many steps (default: 100)")
parser.add_argument("--num_checkpoints", default=5,
type=int, help="Number of checkpoints to store (default: 5)")
parser.add_argument("--learning_rate", default=1.0,
type=float, help="Which learning rate to start with (Default: 1.0)")
parser.add_argument("--decay_rate", default=0.9,
type=float, help="Decay rate for learning rate (Default: 0.9)")
# Testing parameters
parser.add_argument("--checkpoint_dir", default="",
type=str, help="Checkpoint directory from training run")
# Misc Parameters
parser.add_argument("--allow_soft_placement", default=True,
type=bool, help="Allow device soft device placement")
parser.add_argument("--log_device_placement", default=False,
type=bool, help="Log placement of ops on devices")
parser.add_argument("--gpu_allow_growth", default=True,
type=bool, help="Allow gpu memory growth")
if len(sys.argv) == 0:
parser.print_help()
sys.exit(1)
print("")
args = parser.parse_args()
for arg in vars(args):
print("{}={}".format(arg.upper(), getattr(args, arg)))
print("")
return args
FLAGS = parse_args()