Skip to content

rongchengtu1/UHSCM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UHSCM

PyTorch implementation for Unsupervised Hashing with Semantic Concept Mining.

Environments

First, install PyTorch 1.7.1 (or later) and torchvision, as well as small additional dependencies.

$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
$ pip install ftfy regex tqdm h5py scipy opencv-python

Data

The FLICKR-25K and CIFAR10 datasets are kindly provided by some researchers.

FLICKR-25K: https://pan.baidu.com/s/1o5jSliFjAezBavyBOiJxew password: 8dub (source: https://github.com/jiangqy/DCMH-CVPR2017/tree/master/DCMH_matlab/DCMH_matlab)

CIFAR10: https://drive.google.com/open?id=0Bzg9TvY-s7y2Zy1CQklaTTJQdUU (source: https://github.com/ht014/BGAN)

Training

Fisrt, generate the semantic similarity matrices for each dataset.

$ cd ./sim_generator
$ python generate_sim.py --data_set cifar10 --data_path datapath --sim_path save_path

Then, train the hashing model.

$ python UHSCM.py --data_set cifar10 --gamma 0.2 --_lambda 0.8 --beta 0.001 --alpha 0.2 --data_path datapath --sim_path sim_path

About

PyTorch implementation for UHSCM.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages