-
Notifications
You must be signed in to change notification settings - Fork 0
/
entropie_rot.nb
executable file
·4342 lines (4212 loc) · 230 KB
/
entropie_rot.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 7.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 145, 7]
NotebookDataLength[ 230978, 4333]
NotebookOptionsPosition[ 225875, 4159]
NotebookOutlinePosition[ 226221, 4174]
CellTagsIndexPosition[ 226178, 4171]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"input", ":", " ",
RowBox[{
RowBox[{"normalized", " ", "auto"}], "-", "correlation"}]}], ",", " ",
RowBox[{"number", " ", "of", " ", "molecules"}], ",", " ", "volume"}],
"*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"Dir", "=",
"\"\<c:\\\\Users\\\\rschulz\\\\Documents\\\\work\\\\lignin_entropie\>\""}]\
, ";",
RowBox[{"Inp", "=", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Dir", "<>", "\"\<\\\\vac300_1.cvs\>\""}], ",",
RowBox[{"1911", "/", "3"}], ",",
RowBox[{"(",
RowBox[{
RowBox[{"4.52449", "*",
RowBox[{"10", "^", "1"}]}], "-", "6.90580"}], ")"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Dir", "<>", "\"\<\\\\water\\\\vac300_0.cvs\>\""}], ",",
RowBox[{"2964", "/", "3"}], ",", "30.1768"}], "}"}]}],
"}"}]}]}]}]], "Input",
CellChangeTimes->{{3.509828813004715*^9, 3.5098288737921925`*^9}, {
3.5098289719058037`*^9, 3.5098289737489095`*^9}, {3.509829005506726*^9,
3.509829005783742*^9}, {3.509829039535672*^9, 3.5098290859563274`*^9}, {
3.509829143961645*^9, 3.5098291484249*^9}, {3.5098292090003653`*^9,
3.5098292257073207`*^9}, {3.509829562377577*^9, 3.509829562513585*^9}, {
3.5098297311712313`*^9, 3.5098297621320024`*^9}, {3.5152062529748383`*^9,
3.515206324195912*^9}, {3.515208287576211*^9, 3.5152082894673195`*^9}, {
3.5152131504763527`*^9, 3.515213151941437*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"c:\\\\Users\\\\rschulz\\\\Documents\\\\work\\\\lignin_\
entropie\\\\vac300_1.cvs\"\>", ",", "637", ",", "38.3391`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"c:\\\\Users\\\\rschulz\\\\Documents\\\\work\\\\lignin_\
entropie\\\\water\\\\vac300_0.cvs\"\>", ",", "988", ",", "30.1768`"}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{3.5152082907303915`*^9, 3.5152099658962054`*^9,
3.5152125879901805`*^9, 3.515212928194639*^9, 3.5152130687806807`*^9,
3.5152131055527835`*^9, 3.5152131532985144`*^9, 3.515213206147537*^9,
3.515213245041762*^9, 3.5152132885602508`*^9, 3.515217097272871*^9,
3.515217143030488*^9, 3.515482906303564*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{
"Dir", "=",
"\"\<c:\\\\Users\\\\rschulz\\\\Documents\\\\work\\\\lignin_entropie\>\""}],
";",
RowBox[{"Inp", "=", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Dir", "<>", "\"\<\\\\corr_rot.dat\>\""}], ",",
RowBox[{"1911", "/", "3"}], ",",
RowBox[{"(",
RowBox[{
RowBox[{"4.52449", "*",
RowBox[{"10", "^", "1"}]}], "-", "6.90580"}], ")"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{"Dir", "<>", "\"\<\\\\water\\\\corr_rot.dat\>\""}], ",",
RowBox[{"2964", "/", "3"}], ",", "30.1768"}], "}"}]}],
"}"}]}]}]], "Input",
CellChangeTimes->{{3.515207702262733*^9, 3.5152077047178736`*^9}, {
3.515213198519101*^9, 3.5152132018912935`*^9}, {3.515217041748695*^9,
3.515217052415305*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"\<\"c:\\\\Users\\\\rschulz\\\\Documents\\\\work\\\\lignin_\
entropie\\\\corr_rot.dat\"\>", ",", "637", ",", "38.3391`"}], "}"}], ",",
RowBox[{"{",
RowBox[{"\<\"c:\\\\Users\\\\rschulz\\\\Documents\\\\work\\\\lignin_\
entropie\\\\water\\\\corr_rot.dat\"\>", ",", "988", ",", "30.1768`"}],
"}"}]}], "}"}]], "Output",
CellChangeTimes->{3.515217052840329*^9, 3.515217097307873*^9,
3.5152171430604897`*^9, 3.515482906327566*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"nInput", " ", "=", " ", "1"}], ";"}],
RowBox[{"(*",
RowBox[{
"change", " ", "this", " ", "to", " ", "compute", " ", "results", " ",
"for", " ", "a", " ", "differrent", " ", "input"}], "*)"}]}]], "Input",
CellChangeTimes->{{3.5098288509008827`*^9, 3.5098288555901513`*^9}, {
3.5098289004797187`*^9, 3.5098289005657234`*^9}, {3.5098292286744905`*^9,
3.5098292287494946`*^9}, {3.509829450549181*^9, 3.5098294506671877`*^9}, {
3.509829527182564*^9, 3.509829527315572*^9}, {3.5098339324565315`*^9,
3.5098339541907744`*^9}, {3.509839805623457*^9, 3.509839805867471*^9}, {
3.5098454425068684`*^9, 3.509845468031328*^9}, {3.5098495516949005`*^9,
3.5098495529889746`*^9}, {3.5152076260773754`*^9, 3.5152076261673803`*^9}, {
3.5152076578541927`*^9, 3.5152076804224834`*^9}, {3.515208298848856*^9,
3.5152082989358606`*^9}, {3.515210762562772*^9, 3.5152107751234903`*^9}, {
3.5152131581897945`*^9, 3.515213158342803*^9}, {3.515217139274273*^9,
3.515217139358278*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"k", "=",
RowBox[{"8.31451070", "*",
RowBox[{"10", "^",
RowBox[{"-", "3"}]}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.5098256238743076`*^9, 3.50982562531539*^9}, {
3.509833466984908*^9, 3.509833484548912*^9}, 3.509833586208727*^9, {
3.515207632054717*^9, 3.5152076328007603`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"T", "=", "300"}], ";"}], "\[IndentingNewLine]",
RowBox[{"nMol", " ", "=", " ",
RowBox[{"Inp", "[",
RowBox[{"[",
RowBox[{"nInput", ",", "2"}], "]"}], "]"}]}]}], "Input",
CellChangeTimes->{{3.509825630350678*^9, 3.509825638184126*^9},
3.509833466987908*^9, 3.5098335824335113`*^9, {3.5098452653667364`*^9,
3.5098452658707657`*^9}}],
Cell[BoxData["637"], "Output",
CellChangeTimes->{{3.509845267681869*^9, 3.5098452717411013`*^9}, {
3.509845325703188*^9, 3.509845341791108*^9}, 3.5098454137152214`*^9, {
3.5098454457060513`*^9, 3.509845470963496*^9}, 3.5098455036563663`*^9,
3.5098495567101874`*^9, 3.5098496095492096`*^9, 3.5098496556658473`*^9,
3.5098509584053597`*^9, 3.5098512496440177`*^9, 3.5098513642655735`*^9,
3.5098514906028*^9, 3.509851631191841*^9, 3.5098520244763355`*^9,
3.509852251827339*^9, 3.509852331140876*^9, 3.509852372585246*^9,
3.5098525640511975`*^9, 3.5098529185984764`*^9, 3.5101667638960314`*^9,
3.511148723486534*^9, 3.5152064385894547`*^9, 3.5152076345178585`*^9,
3.5152076662226715`*^9, 3.5152083071033278`*^9, {3.5152107679560804`*^9,
3.515210777598632*^9}, 3.5152129282706437`*^9, 3.515213068857685*^9,
3.5152132062015405`*^9, 3.515213245088764*^9, 3.5152132886082535`*^9,
3.515217059633718*^9, 3.515217097343875*^9, 3.515217143092491*^9,
3.515482906352567*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"c1", "=",
RowBox[{"k", "*", "T", "*", "3", " ", "*", "nMol"}]}]], "Input",
CellChangeTimes->{{3.5098076621849575`*^9, 3.509807664636098*^9}, {
3.509807712034809*^9, 3.509807739029353*^9}, {3.50980796101605*^9,
3.5098079633461833`*^9}, {3.509825585893135*^9, 3.50982558807326*^9}, {
3.509825622365221*^9, 3.5098256351109505`*^9}, {3.5098316000531254`*^9,
3.5098316300778427`*^9}, 3.5098317074072657`*^9, {3.509838610274087*^9,
3.509838612351206*^9}}],
Cell[BoxData["4766.708984309999`"], "Output",
CellChangeTimes->{3.515212928296645*^9, 3.5152130688796864`*^9,
3.5152132062235413`*^9, 3.5152132451097655`*^9, 3.515213288632255*^9,
3.5152170616778345`*^9, 3.515217097367876*^9, 3.5152171431124926`*^9,
3.5154829063705683`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData["4766.708984309999`"], "Input",
CellChangeTimes->{{3.515212324665119*^9, 3.5152123260792003`*^9}}],
Cell[BoxData["4766.708984309999`"], "Output",
CellChangeTimes->{3.5152129283276467`*^9, 3.5152130689036875`*^9,
3.515213206248543*^9, 3.5152132451327667`*^9, 3.5152132886552563`*^9,
3.5152170624678802`*^9, 3.5152170973928776`*^9, 3.5152171431314936`*^9,
3.5154829063875694`*^9}]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"Ct", "=",
RowBox[{"Import", "[",
RowBox[{
RowBox[{"Inp", "[",
RowBox[{"[",
RowBox[{"nInput", ",", "1"}], "]"}], "]"}], ",", "\"\<Table\>\""}],
"]"}]}], " ", ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ct", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "=",
RowBox[{
RowBox[{"Ct", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], "*", "c1"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.509679167798074*^9, 3.509679170861249*^9}, {
3.509679207866366*^9, 3.5096792379100842`*^9}, {3.509679289145015*^9,
3.5096793038618565`*^9}, {3.509679639415049*^9, 3.5096796450053687`*^9}, {
3.509679705009801*^9, 3.5096797260410037`*^9}, {3.509679857888545*^9,
3.509679890251396*^9}, {3.5096799459695826`*^9, 3.5096799553781214`*^9}, {
3.509753487928319*^9, 3.5097534892333937`*^9}, 3.509828824306362*^9,
3.509828934209648*^9, {3.5098336149993734`*^9, 3.509833617591522*^9}, {
3.509833662750105*^9, 3.5098337250006657`*^9}, {3.5098386336534243`*^9,
3.509838635041504*^9}, {3.5152121798038335`*^9, 3.5152121862172003`*^9}, {
3.515212219125083*^9, 3.515212220463159*^9}}],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.5152123799372807`*^9, 3.5152123813353605`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{"Ct", ",",
RowBox[{"PlotRange", "\[Rule]", " ",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", ".1"}], "*", "c1"}], ",",
RowBox[{"1", "*", "c1"}]}], "}"}]}], "}"}]}]}], "]"}]], "Input",
CellChangeTimes->{{3.509679959256343*^9, 3.509679966012729*^9}, {
3.509680007298091*^9, 3.5096800091311955`*^9}, {3.509680133602315*^9,
3.509680152801413*^9}, {3.5096802851879854`*^9, 3.509680336232905*^9}, {
3.509753454064382*^9, 3.5097534849051456`*^9}, {3.509828943822198*^9,
3.509828944666246*^9}, 3.509833631034291*^9, 3.509833736333314*^9, {
3.509838643410982*^9, 3.5098386490573053`*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{Hue[0.67, 0.6, 0.6], PointBox[CompressedData["
1:eJw0nXdcjW0Yx89e1ens0d5kJHu7r6zslRWJbN7IDIlE9grZeyUKhYzIOUlk
RZEG0dAe2nu8R89V/7yfPjrPeZ77ue/re/1+13Xfr+VCr2lLGDQa7TWfRvv3
346frwWtfpGXHkDz7YqkiQvXkMUXEvbedYzA33eQomrXba7+d6Bx+8oXG07s
I171+vum11/Cfw8kqVvCEkzp22Gr7J5zlk8Qiee8XU4L3q+l/v4Mie4yY270
93PaLYV2PXlhF8hKJ3WfJbevaKnPXyH6Y5qiZZuvaAf/nnz49OprxG/d8o85
d89rqevdIKcrQwauUgZpo8bqM7ruDSYNgQXEs2kfXj+E/EhZH8W7vUU78FG8
98vLd8jwYc75jh6L8PvCyFyTYT+DhvXQPjXbXTz16T2yKeY5X5A0Du8/nDzb
MvuqkdAVLry2CF+3PIJ0XnJ8TXqXRUDdzwPi+2b+QLbVf/Cj4d8XPiSXLXb4
Txy4Fp/3EeF4JY8oM14Pxj0ybDj+kYSmEebc77QOqPt9TFJ6Dlzt4O0Jcxb/
u+IT0ixlivJ8FuB4PiWNi59+bPIYAufO/vt5Rmzacpw8m8fj80SR9EZO24Ln
rtq0hDqXnJvPSdC5Y07zRXPx+V6QMfzQJW4Lp2vVrJnC7g+iScJTc8GjeSPx
eV8SdtKd0XpbxdrZ7RfUkIwvXul+exzw+bWk4tOegcP/OMCE/vudFuRqyctt
s80uiOk4HjEkkjEo0A66aUum/rtiDDngzrbdsqA/vq9X5FXG8Rl33ftoD3rm
N92ueEUsVy0+u2CnSkuNVyx5FjUr0P5YF+i6V6F7hFhi8mqf/tCCoTh+r8nc
rIHup58Nhw9XRz2uanlNls8bcbf1J+B4xhFWb/nvs5Z94d9oqVhvyNTzi5N7
35bh+L4hgac1vSymWGgFKdfXDBW8JTYzFswIvtFdS433W/Lf+o2Vv9d00975
97iieLKieufSayWWOH/iybLX9M7XEgXacf8up3hHwt8bHSu0qtFQ7+MdGd/H
fRSvXKJtH26T96RiwOXGOTvs8f28Jykleyb0nddP+2/0vlh9ING/LOdfjB+K
7+sDSYl93+0sHbT2bkdf1XT+SMyCng+2bxmM7+8juWjy3Cw4q5f2ne5qRj0+
kT7XOeJldab4Pj+RopevBqiXcmH5sVJf0jeBHHEIXv0z3hqo95tAzpm/k6e1
dAbdzeke+TPxi/q1pzLTDqj3/ZnEDvU5oyyygOk5N8+/tvhCEnxm9n4bLsf3
/4WMdLl6oPa4PtzQjV7K9S/kulBg/MCEj/PhCxnz4e0U5xg9qG75trnQLpF8
j/Q6HqjRw/mRSOoWTkpeMpUOI9snQCKp9LjT89TtIg01XxLJjEGeNjcPybS6
l6d7oCQiiBw/4JynNc6fJCJZQR49Duqibb+98CTSumVw5tqP3XE+JRHXHmbF
h7Z10/Zu//lKyvrBlT37OuH8+koWfGYmMsMttLu073Uz6Cs5Oyf2kdlKqZaa
b1+J63RJ+vIJLZqvurc/e+A3kqtcdOTP3BxCzb9vpN+WEXmjYlhg3X7Bb6Tx
pSqhoKcY5+M3MiR96bW8PwpY3/4CksnaVctFky8Y4fxMJj5xG2JDPxhBbE1n
3RtOJjVXGhiT0+Q4X7+T4JyJlenGHJC03+B3krNl29Ud3Ss11Pz9TjKcp3Kk
WXLtv7t7FP+d1PtPTN0y3grncwo5PKD2knKCnfbBxb+33oxPIfudWVrz37Y4
v1NIr0re3pcullpG+wOnkOiXmZ1cpslwvqeSIfbbOPNHVGmmtU+YVKJmp7FH
zqVh/Ekle8///Sn2EMG19sdNJa5pRjLFaClQ6yGNnLZMO3elWAyV/y43O40s
Gtp2adJdfYxXaaSL+efaY8PZMPzf9P+RRtqm98jMcqABtV7SyaAMO2/uh0bS
Pn3d08lP1+ZJGYwaQq2fdNK0Ncb8w4QskuXz74WkE0s6569NQImGWk8/yNYR
q9e/msLV9myf4D/Iqof8yhHnZbi+fhCro3GzSyebaP1PjtBNmR/EeJ+QQ7Zb
4Hr7ScRuPwL3llhoE63+veCfZOqwx+dz5prj+vtJklJt7sY3GmktdbP5WOlP
cqyfR8HzUwpcjxnE2NAj3zFOql37b3msySABUYs623WT4vrMIP6257cmd5Jp
Y/5Nv6oMUjX9r9XnEpmWWq+/yE3BhSj+AKm2/fV6/yKMizM6R4YKMD7/Ih5r
Pc8+61ugaX/ahl+kpjrm3bilLFzPv8mSGdNMw/cqof32fH8T/tbLe58XWuD6
/k2mFT478mCaNVA0zyR7QwMqQtdb4XrPJIaBT3d84ZhCyJvxuhWdSYJTbF7O
eCrC9Z9JuoT/qv5WlUOm6FajZFcm8RsbK71fytZS8SCTjOcGtk7cLtfWu/y7
YCYJ26PVyrgmWio+ZJKilNNPu8WYaa8Y/VsQWWRKflTWs2gzLRUvskj/m3dz
1g001Y6hXjBZMOv3YVJjpKXiRxbxvmHuaFOu1Jbf+neDWSTEZ/ifnECploon
WcT9gmdLn84C7ZnV/1ZQFvm82m/2EYdyjC9ZxCnggJnT22aim1y6JZVNvEdt
eysfJQUq3mSTPW/cs3y/mUJ7NJmYTRI/bGkM4Vgh37OJZkrq0bDXlvBvtrgd
zSajby3Z0uZkDFQ8yiYjzvRvjXLiARUOswl4J+x+7NasoeJTNunR6eBSF18j
bfvlJDkkdrb9qVV0W4xXOeRw+s+pN4bba9vDkUsO8XgKT56Pscf4lUMuJj6L
HbzEVtseTk7mEJnGzvLuM1OMZzmkp/fGpCpDoZYKBzmkWbh8cv3FbA0V33JI
RpLTz5OaOuLXHnD+EO+984csGMYAKt79IfuXJhTPP0ODTu0L6A95b3KvnGZY
i/HvD/lw9bT9h6Q88vnfcjr/h5z0/vTaLC6dUPHwD3lzyk3voXM22dS+HP6Q
xIVvjq9VlxMqPv4hepNyHS9tryXm/6azWS6Jcfp17VxjLaHiZS65+cXYwS6o
hLwd3z6CxC+toPpM6xsNFT9zSZejfULeLq7TeLUHyFwylfY249Q9ppaKp7mk
8+LmC5ui2Fpl+/DlEpMXiz22O9G0VHzNI+MP+8y9lJKtab89mzzicPP308J3
FYSKt3nkOW1uYqcTTFja/pNH/GHFuZrhXMwf8siv6E3pa+wYoFvMugibRyJT
Qh3nn/hDqHicRw51Orf2kEGD5l903FyYR/zUT6aOHybE+JxPeu01r+xzVa51
b79gPomq+tr7AU2F8Tqf2M0JXj/ygFzLoQIUWXrw59fkYwYYv/PJ2ClDuN9s
azT/3obsXj7RDJ3Z/PhSFaHieT7pF55SkXxeD2a232A+6ZQ5YtqkAilQ8b2A
3NUa7PFZrIDWf8utZwE5lxjzydtKDlS8LyBFZmt397soguB/03ldATkwwvBc
6W4mxv8CktiPtXaG6U8yqf2BC0iP6Omw7Um9huJBATlm9nfv+t98be2/11FT
QOzOFfa3OSzGfKmQBEfu8gzrKdVe+ve4/QvJYokje/AQsZbiRSG5qpnZMLyY
ox1NDSCROZNY7t1szK8KiUP+gOJpd+lQ9g8PUYXkYnjaxAECGfKkkPR9uj1x
YqkJnPo3ek2FpHrW7+nLIyyQL0Vk8qWbpv48C2gPz0OLyIT9y2QvYlVA8aaI
MDo5bthhzYf28Lq9iJTu2eH9c0a2huJPEdEM+N2iny/Stoc/bREp/jWZMXuS
iZYKV0Wk9aFeeJqRpbY9vDCKyTcuCFfHW2C+V0w2j494J/5lpG1fviOKie9Y
u5V3xSLkVTF5Fzpt6axN5Zr25bG7mPj5wYqXHnWE4lcxqSmrPXs+jgPt0+9N
MVnubPOcxuUCNV2KyfjOW3sM/tREkv+9Xl4JKWmoMeq35aaG4lsJmVsxe/g8
12bNtvYAWEJ+/F5561sOB3lXQkbf2N6cas/T2rZPwBJyYsdg16UhDORfCek/
e/io2JBKzaeP/35KSMv5fBJLjhGKhyWELbiSUFhQTDa2B9RSsjXDQ56nrSYU
H0tJ+oyDjRVZtcS0fUKXkiuBkxY8Da8nFC9Lye4L912lI1pJnEX7Bcmy0ptD
ZkaxgOJnKYkK+33h1DZ9WNUeoEvJmZDdY8M7S4DiaSm5tfflirarMmgPV7Iy
wl73YPvGoTLMh8tIGD/FYadKBO3hYGYZMZ1i6TdmEw0o3paRh+WCUbTR2Zr2
5Xa6jKg36w3dZ6uH/C0j901djzYuUmqpdKeMmBeFK8YFm2opHpcRpePMXTtT
zbTt08XoL5m0+vla+mwjLcXnv8Tq2IDR7CMibfvrcPtLWEc6P9Y8yddQvP5L
jn9s2pJrzwMWtYBJ8YbV6eN/qZHff0l/n07PjtRZAoX7v+Ry+OGa8sk2yPNy
8uT81fDjEda43stJr4GWfV8t6Mjny8mgn8e+JRp3rP9ysmX+f4bxdxnI+3Li
3mXO4fMfizH/Kyf77Hem9nqvj/q7nDgWvZtwsEiupeJDOfG2vpfyrqdaS+UD
5cTfd8nzMlsV6qVysmrArvcXV0sxPygnya/oj/oH8bRU/Cgn2k2nq4p7VGio
fKGcZAftt072yydUPCkn0yt3reGraagvyklDn8v6ZmNZQMWXcjK14UYrM5cO
VD5RQbZ/4yhS51URKt5UkPzp1hWcwd80VH5RQV65fby9YwoN408FCTXo6nXV
ygDzjQpyz9J35sO5UoxHFeTmtrUbHuniNZV/VBCvsyu2XE+UYXyqIH+W/kja
8F6E+UgF6bp9yoWjBUwtFa8qSEy+U1e38q8aKj+pIIt/7w004NMwflWQ2caN
eWErREDlKxWEnfqd8euRAuNZBblcHJ3xwdQIqPylghyNq27qs80I41sFmfpz
6Di5qwqofKaSuP7c/jozSobxrpJIyj5uzfkswvymkvhsZD23KBRg/Ksk1Vln
7kx9wsZ8p5K8PWsr+lJNw3hYSbpf7M7QGtcQKv+pJK056i0VO24RKj5WEpcP
V/V73GvRUPlQJYm+OlgY5CZGvVtJPnPNFoqDTFCvVZJvMz4JW29YY/ysJFsi
7184+7CTlsqXKskwrzu/5+6zx3haSaxKLnQyP90Z9V0lMVih2DL6tw3G1yrS
N2N65o8UU8ynqsihm5ElB8KFGG+rCN/wkMHft881VH5VRbZ7edZJr/CBir9V
5ILms13AcwVQ+VYVWZ622+SEswlQ8biKSMP2snZ3NkU/p4oURP/KK0xXAxWf
q8jfpO4DX/hLgcrHqsh9/Zd+Br24QMXrKhLd+/7S7V9KCJWfVZFT62tyTQcU
aaj4XUUm1y5jh6ygYb5WRXotiA4OX89GfVJFJg7888J0Dxv1aRVpMFgekOJC
11LxvZoInbw3psdWa6h8rpqsz+xe2ONoMsb7amL2uaK7VfQvQuV31SRh/j3H
scxyQsV/3edXa2YNKKwkVL5XTfKDF60fyK8gFA+qydvBnLgQdj7mf9VkblN8
zSm794TiQzWZJtw1y7Lsh4bKB6tJZcnGBp9FlRqKF9Vkks8uP/XJFg2VH1aT
K8fuHjYbwdRS/Kgm9aOOvy2ZwtZS+WI1+Tg1OLZLKBP1VTUZ4Tf0RLqwSUPl
j9XkdGr4wNXZqRqKLzXkZabp71l9qzGfrCH3Fib+HhTABYo3NeTQ1CM/f7WI
UI/XkP2W3v2nuEiB4k8Nmfa0vHv2HzFQ+WYNmbSG5M1z4wPFoxpiE5C5wGVu
JaHyzxpyRVLaurK4UkPxqYbMutlrZMkJgZbKR2uI3f6Cw+fGdui9GvJ11rSi
5DNyzE9rSL2FwOCFUKal+FVDsrIcVKktQsxXa8hrrwB7ZRkD9WEN2TB/0RJ/
jzINlb/WktHOY+ZHmZ7RUHyrJXt/hLIKmt4QKp+tJTdv/SmSXUnWULyrJWsj
FznSN9doqPy2lpTHrLC8FcjUUvzT/f42a21DE19L5bu15HL6jk0Pvuih/qwl
g2ax1lRe46GfWkvi8mp58e/oWoqPtSRoTyVv6X9VGiofriUhpW+qWrelaChe
1pIj810f7amNwvy4lhx4w3Kr7BdHKH7WkrQu4yKWs8MwX64lrif/c9/5+Bvq
21qy0if99oq8NA2VP9eRql4en8U/X2kovtaR3iT2ZcD2DELl03UkVFi12Dqy
mlC8rSNhqydsWKCkA5Vf15FHBQzGfBYHKP7WkZCI1IUQzAUq364jyx4dcMub
wEb9XEc0rIKjLn6thMq/64jXoHuXVu0oIhSf68jjvk5FKwtSMB+vIyMjbDVW
A+o1FK/rSIr20nKPz0z0W+pI3W+O6YEcvpbidx0ZM6db8tZ7Qi2F+zryfvu4
o+YTxVqK5/Vkh7Q1KTpZgv5MPfnh7F296bpUS/G8nmwwMpzZvZtUS/G8nrhY
vd1SlivSUjyvJ+UF1n2zlHwtxfN6sr1fi8FW0wYNxfN6IqmtfD/rv2RC8bye
TN8/dhW9jQEUz+vJ1aCxQ1PnijH/rydmnboeeNBfhf5fPannd/pYdcwUKJ7X
k4EHk5R+uyyA4nk9CRhp/qyLzBL9onrC6OwV2drPAnleT2bFbf85ZJ4x8rye
uL3qb70hWYI8byC33ztPHTSnBXneQAbG/Bjnd7EOed5ANmctUmww6dATDeS5
/sE+JZPNkOcNxCuqytS5wAp53kDW3PE2Np9kgzxvIO92nh/+cow18ryBCC7s
6WLYwwJ53kBy62TzdvZXIs8byJSyw5tGN/HQb2gg1wP6jtlslaKheN5ASt0s
OY7xdOR5A1kWUltWHiZGnjeQA51giqO1CnneQEK2i/o+32eMPG8gqV0eh+8m
xsjzRlJ+zs28ha5EnjcS5+t2z/sNEiLPG8mC/wJ8EnRcp3jeSBS+knGPjzRr
KJ43kvg9mUNuqCVaiueNJEiTfnjlZSP0UxvJ4+6/POd5m2spnjeSB81cz3cs
Cy3F80ZyPyQ8fdFmE+R5I1k8Rd+ido8ced5I4i4ULZPX8JDnjSSjS+W8S015
GornjSR6RWBxmLQO/bpGwl/AHzJvGw8onjeS1UvSUsgtQ6B43kSuBxcd/gAi
oHjeRPya7kV4jdEDiudNRGo4UtuzgAYUz5vIcrZorcGNVELxvIlscTtsX+pa
p6F43kRen/x4ungYD/VVExkX9uLNvZ2G6Kc0EfnhvdxO3Qy1FM+biILXd8fa
oxz0V5pIdbcIo5AFJRqK502k7YqdiV1YHfK8iSSIOyVH3zRAPdZEBlYnzbHL
kwHF8ybiy1sfFnNYgfqsiZw4v+uny1wp1jeaSN/tgwZ6uPKA4nkzSXIscYrb
kI/+TDMRiUbN7Ha3DnneTCp/FZQlK3laiufN5GtL91URN/W0FM+byRPu8Hnv
N7K1FM91//528QjfwmINxfNmor+8n7lmRT3yvJkwk94mZQw3BIrnzSSl+6bn
BREKoHjeTBY9Dge3I2qgeN5MeOcSPpcEKtH/bibvykuCXw4XA8XzZuJ79+yc
4iE0oHjeTFj8T/u32v7SUDxvJlF9Q/LbgthaiufNZPCXEfwaE7GW4nkLOfq2
ZY/QXKaleN5CDhkM5f9XJEV/tYVUx50Z0HOMWEvxvIXMmfX3aV68QEvxvIVE
O75zjvrF0FI8byHd3nX72EfRoKF43kLOjWOc6l9ajn5SCxEmLoQSUSHyvIUE
TKvv/an/H/SXdJ/v9NTvXc9MDcXzFtJjCZ+xaHmqhuJ5C3m1Z82375FfNRTP
W8jduwHRyWXfNRTPW0iy+6uM8JAsDcXzFvKmyW1A/ZdC5HkruTWisX7tiTLk
eStxfLnNeviYIvSnWomCezk+W/gNed5KjK9HDHBelol+VSthpJlKT82rIxTP
W0n56TUtTkYM9K903BrrZrTGl436tpUEL9L3nN7CQj+rlcxI7zppcR86UDxv
JbaXGkctZ9YTiuet5MBBm6Z7G/4Siuet5O3TfumtK4qR563EfeqkFfQDVcjz
VnL+ZOrMbM82QvG8lXiUpZ//PIcDVPhrJZ2/RAaz4gVA8byNuM+eTfM5LQCK
522k1XBjiOM3FlA8byNJ3TKeTojp4HkbeRsRcII5J0lD8byNqF3Gf8j90KSh
eN5GPmZdr3cez0b/rI3Qfm3rfX0GR0vxvI2YdN085cgSGvppbSRgYLHqimm2
huK57vsf+c09t1+XR7bzvI0YLfwzxEwkQP3dRqb9SWX2+ikBiudtZPfXrVed
58pRj7eRNbnWfL0bUvTf2kj/+ktLvVz0UJ/TgG5t3n1VQTn6MzTgVa7y9LnT
rKH4rvu9KPHDf+clWmr90+CCOIG50coEeU+De+SmZYyhJdYraHCqk9nXaZ8t
kf80qCy5Yn5ttAXGBxq8tJvnM/y5GvMBGmg+XphbdUWE8YIGo1Ye6fT8RxPq
fRr4LnkwLKvoB+oBGlgyncUfJXT0/2mw2/9zl0kgACqe0CD04NLOR48Zol9I
g2XlYbxSiRjrtTS4qHWWsAPFmE/QQNbfY8P2y2KMNzRwLxxlWza7I7+gQf6j
APW1YyKMPzQ4fL82cW6RAeYbNAj02NkjZQ4P4xENNtYeWPZUNw5U/kGDPI3f
tlROPvrRNFi6bc8g00F56C/QYILrkoB3oW3oX9FANbye6Sbgaqn8hAae2p3p
zqF81CM0CLLMNw7vzMX6BQ2eb1llapzfhvGMBoovjgcOW+dqqPyFBtuNpYty
b5ag300DH9q15d63mJjP0CHbe2XrtwdCoOIdHfgxs7/tO9VRP6PDvCfmosV2
CqDiHx2WbIpePlejwHoqHTam15zJ7ypHfUOH5Sn97wh0+RmV/9Ch12yW8T4D
LuodOnSaXjkhak4FofIhOsR3J14bhhRqqHhJh4Te57NvBzAxP6LDfMXKbtsE
Bhg/6TCa6x/YmS3GfIkOu1WjS3quEWN9iw7Ks1ev8eaLMH+iwz7vnq49eAZa
Kr7qnkeYXDZSy8N8ig6lk+JPLe3P0lLxlg4TSt3OjxrRiv4uHVa2MpVpVRUY
f+mQP+bvkVavePRP6BDu8ZG7Kq+IUPGYDuIzcR9DypsJlX/RQTBxf9KEn0ys
r9Lhq9sQ4X5zNuZjdFh94ebq8xPp6B/SIaz0ffaP+xWEys/o4CwU3ry+LQnj
Nx1Uoa9t4jc0Yv2IDn+iPvZ7VMFCfUYHafY+v8W+XC2Vv9HhHmPitg9HWFhv
YMDTI/SE2WObNFQ+x4AT/cwYjrG5GO8ZEHF71vLQGbGEyu8YsDJUa7CxOQv1
HANm1nnZVoVnESrfY4D9+18veaXJhOIBA5ZZu07oNf4L5n8MWBK8xTvydBby
gQFd05LsZC91ur49H2TAwYUHC+yeMdD/ZMCvIetGNYr00O9hwNEKL45giwj5
wQAXIy/7h55irH8xoH+GZcSyeSLkCQPuflopccjUQ7+cAUazWh9GD+IgXxjQ
VhlmkL+BjvUyBox4rNS/N6WZULxhQLfgBh9Tyzqs7zIgqi2JtfDAX+QPA04/
+9C36+FXhMo3GdAvkBPyyLsK9SUDUrxNIrNmd+SfDNh5tOz1AmcZ1scZULjV
Rd7jkDH6SwyYtvqZyxIbC/RvGdB35/7Z1dct0G9iwIcfBZGCPmZail+68Ujp
bzHjvhL9JwYM83vJvTpQiH4vAzzS134b8KleQ71eJvhO3P6g+98UQvGNCdUP
ut+z0uV9VD7LBH/XxcUX6pnIO93fG7RtdSxkY37LhBND2fvd17ORf0z40TUt
5Op8Fua7TNj+qCHSupqJ9V4mWOm7blJfZaGfxQTX9+UJmhY26l0mPDt0zmUg
m4v+FhM2/rXPCPLv0L9M2Ds76L+IY0z0u5jwUlGy3bxbM6H4yYTTwRNeGKqK
CZUvM2Hfz7oLG4ti0K9mQvlM/teMUx31CibcY4nMhp5o0lB8ZULGg4NHdhvR
MZ9mwjvn6/WBZgwtxVumbl2yZ2cX0rA+z4QcZrrbIO8m1NNMuH2oW3QXp0oN
lW8zQZpevYC1KRP1tW58Dof4iq/tRj+NCceNPgVPOPsO62FMuGD72WHc6UBC
5eNMWBDJNk+akqWheM2Es2sOSXpY1Gio/JwJA8rs2/aepKEeZ0LfZ7meQ1Us
9N+YYLT09J6VAibqcxZMkpGHVVvqNRTPWSCdPWP56hVq5DkLvhq417xobsV8
ngXr/rwaxVgnRD+eBfeVQitlXxlQPGeBhcdy+5uZMvTnWXA6tEG7Y4MI67Ms
GOd0c2ENv5VQPGfByLBJDf6vyrGew4LpnDvHW3qKUO+z4IiUV9woNUI9wILv
Nvb77vAt0M9ngbHn+6OVzzv6HVjgCkUVZafM0N9ngc+Mo+c37lBhfx0L6IMq
k5K2idDv//d5m7bbc1o1FM9ZcLbr7jFckx+E4jkLEiaOXLv5JAd5zoK9uxZ9
yR0kR56zgHHK63eLoznynAUGnoG/48xtkOcsCHYQ7nuxsRPqDRZcMI7uEhrf
Gf0FFpxfXc9z3dYJ9Yfu+rMmzZy61hr9BhZU1grO/u5phHqEBUtbrwWbPGej
/8CCJ9nWQo/OlchzFswJTTimv0GM9UsW7Dprlrk0R416hQWzx0TeVqSbYP8C
G9bbkHUn/YxQv7DB+2ys1c5GKdY72RA8Zo/nITUH9QwbUlpvX/Sclob+BRvO
05bdpe9qwvoYGw7Os/BPey5AnrPh6nKr7I0HxMhzNhw/3VO677AUKJ6zQV9w
/vPHtA4/kw2f1GfLvtRKsP+GDeG+09oEEzr8TTbYppX2cawwwH4sXZxZGB07
6iIX/U42vIxenudKbyUUz9nQLd/34FGb3+h/siGze/yauG8VGornbB2vPKdI
lrGR52xoCY9sankpRL+EDZZXlvQ3sRajP8qG1y2zGlwOCtE/YcPDC9sdrRks
9EvZEHP8xPCxsTnop7CBf99pwOObtYTiORsmTXsxOWYLH3nOhsHNxpOzzouR
52woCNntVFwiRb9FN56fFOMvWcmA4jkb7B8mjbzQWYr+Cxuu5B9b2ZQhxvoh
GzIOdLFZdlmEfgwbPEUCcnugEPuzOPCuxvrEC2s++jMc+Dpm98sDx2lYb+QA
rbjlukvnLOQ5B7a8PaZYtKoa9RwHwh4OSIjM5WJ/GwfkvyKGG/iLsP+HAxM+
0Y73thBrKZ5zwMLkyNUvZXwtxXMOFC00gDP7K9Df4UBfsx4xY+43of7jwIkB
/ucl1hLkOQe0Z0tj2urUyHMO5BYGtbCPGyPPOTCy5nvsMh858pwD4cVR1WGL
achzDty8Jgh1Pc5E/5cDHw1n1HwNMkF/iAPN2ambYqtt0Q/mwAznbG2GaRf0
izgQKun99H2SvZbiOQdY6lwS5miL/hEHRvdJa57+yAjrqxxwjB9iNCWQhjzn
wL2ALXGr4uhA8ZwD4ri3wxNPyLG/hgMaj4dujzqZAMVzDsx3vVNU+MYEKJ5z
4NBM9l8WUw0Uz3Xca/sYWSWRov/EgWHF1w9oeQLUpxyYuXTw0qqJNPSjuDDz
Wd9Eg5FVyHPd71uLrX6W5iDPuUB3ZKVfqblFKJ5zwf3+0+nBMwuwH40L3npz
My76t2oonnNBzmR5Jq8UYL8PFySfAhziwiVYH9atw8+nHjoGKbA/gAtOgmu9
Vu1WYn8IF1waLDw2pcqwP4gLvhf15r1/b4D1ZN39hf7M+KXfrKF4zoWTd74Z
VE/+gDznwq5zgxK/tDQiz7lwIrzzJ98rDPS7ubDlpfvsw640rG9xYX/ZZ5o7
pxz9by7kah0rj6p/aCiecyHTJfdSqbwZ9TMXiisrJh1xYyHPuZD8+qFrj1qm
luI5F8YMKlVlvalHnnNhgvlYVpAwklA850LY0q7Vq13aCMVzLixNXjKym70+
6m0utJFtvJA6EfprXLD++9+aJiJE/c2FHulflYu+0NBv48L7d5wbdJ9fGorn
XCiNOvtk9yEB8pwLkYGR0iO+CuQ5D6q/53iv8jfC+hoPTl3jX/1vsRL9dx6Y
35z+wEkgQH3OA9PM5HN7J+cSiuc8cIt69/1WmxR5zgNR58jdR0dZIs95cGlE
a/jMzrbIcx58f//TZOIWG6y/82ASp9V5yDIzoHjOg04HuQOu8wXYn8ODzpt+
jn20q1lD8ZwH28JXfRjkrkae8yBuTw+7wEwr5DkPnpas/fFVbIs858HPr8fz
RNOskec8aAu7799tgSnynAeDJJGRa06Ksf9Dd/1Jnny/hgYNxXMe3Bre7YL8
ejr2f/Hg6vB3aQWX6gnFcx40yKMX0La0EornPDg41TjMta4F+4V4kFxEy3hi
04L6nAe1E95EOevRkOc88OMmZC6tZCLPeTBC67VB7cFHnvPgmcXJ+903CpHn
POg27M6lgD0i5DkP5m0pd+gUZAgUz3lwml474up5PtYXeHBUPiD6Bp+G/bo8
eN82Q3B/eA6heM6H26OjBq55mof1RT6M9Y/WBoc0aiie8wG+JLns+UxDnvNh
p+do/w1325DnfFDv361+37NWQ/GcDw7fnY94/f6toXjOB5ukUkvvGxnY78YH
3tsN86eOr0Z9zofDyZFOK9OasD+GD1X/yW/3LWwmFM/5sDpJmLwwoB774/iw
22O0M/dzBaF4zof1jte/tvUpwn4aPnTm5l79cqAEec6HBUnuz0sba5HnfHix
ZVTfBR8ZQPGcD+f1yzsFXhcAxXM+DBwXt6r3fUPs3+WDwZnRhbXJQqB4zocN
J7tV7pjLwX5uPuxgs57C7g59rnseuwnLPixsQp7rrhf9vi7DXIz1UD58nHRm
U6yxGvs1+bBu6vpV9jUmWB/lw7IznMwphiZaiud8sJo6XFkPSqyX8mGlad9j
Dn4i3G/Ah9Qx0zYWOXTocz6M+TxQ/FhRp6F4zofHc/oOfKMqR/9VAL/uF+Ul
rf+L+lwADnun7uqqV4r6XABhrsHJN1RfNRTPBfBbv1sM+3EF6nMB2Kdlj3xw
mo/1GAF8rTZ/9rVejv1GAphzaSsz3MQU+y0EMOndpeuTtppjf7cAykmN0X1/
Y+y/EMCWxoRW261i1OcCMH+XJOYNKMV+aAE8+56db/KRhfVaAdT7e5zeWiDD
eo4AMqx2WFztr8b6rQC+P8lOtoxSYH1HAGo7xYfKkULkuQDGbR8kfTqsDvs3
BJBivoajDkpBfS6AW9JZ4RPL/qI+F8C8Af2fS/cmoj7XXW9G0lRvi1oNxXMB
7I2L6nLfkI88F8D5qc/sxA4d/XIC6C6/5eio0UN9LgDx2ZsJk59WY71IAJ1H
5w/i32tDP1kAaWOXC2c+lCPPBeBvGn6oD80CeS6A0b5HJ/xMtUSe6/6e/TzN
IcYceS6AJ+b5SU6BcuS5Hthmd9qtfURD/1kPFjm9l9+5+1dD8VwPCiZtD/Qb
xMP+LT1wmFU41NTYAPtJ9CB2op74aBgX+zf1YOQlc622bwP2l+iB+Ms4j6HX
EzUUz/XgwZF4puOPz1if0oPJ5otaLZZ+R/9aD3q/K5ney78N61V6oDe/xbxp
Q0d/mB5w+EMj0ueosH6lB2e7aV/Ylpqgv60HfaOdJ4u2m2A9Sw+K3U+x57xT
oN+tB6rmw9r0Aj7Wt/TA48e+59Wsr6jP9WCeMtQ/WcPE/hU9OLnEhjk2SYz9
Z3pgXTa05zG+HPtZ9KC5zFOgFEmB4rkeKPqc9nQayweK53pgOmofbVBDMfJc
D/y912+8+F896nM9MOjaxeROhB7Ww/UgLMi52f2XGPtfdM8T8s19QGcx1sf1
4KF2k5nFXi72w+jBpIu3S7ecy0Oe68E6h7P3Xnm1EornemDRc8KtxEoR+u36
EHFjKIm5osD6mj5U7QkzTo1XYH+cPuRKnXtdSRUBxXN9MJZ1v1A3tg55rg/c
x+mC3/PasP6mDxtoZGFCsgz9dn0oV0rDXVNM0W/Xh9BhvZ2vDrJAv10fHh+7
cHF4mTH67fpwpufS9W06fUnxXPf5+btXH5z3F3muD/IFu+/KMzr8dt3vwdNj
T9wUo9+uD1NHdYvSdpKh364Px+nhx2yWiNBv14eTkQ8aNm+hod+uD1bVFt+C
476iPtcH695rb9VcomN/nj4UGT6Z2HUOT0vxXB8e2MpIhnVHP78+9NpmpffW
qwr7efRBNcv4d+SWfOS5PjyTxDxwK+3YD6MPXweRmV+TDZHn+uDkVF9ZfUKC
PNeHUpNHXyd/lyDPdZ/fd0K44IEYea4P3Saz/mQYdPBc931Nku1+8/SR5/rQ
L/eN97iZXOS5PviX+31QOrSh364P999fYgpEWchzAzDaEmJiXViFPDeAExPn
p1he4qE+N4C04h5HpHIJ8twAsjYHtZldk+F+BANwuGQUOc+oo/5oAN+21rPW
PNLDfgMD6F8uu8e61aCheG4AzXpVpi+ffkGeG4BN4Bynh10akecGUDypSHjR
iIH63ACuHDtcnf2UjvrcAEaa1dP9PVqQ5wYw2ui/bBuTBuS5AYiHXmvZ960J
eW4AXrZ3L/azY+L+IgOo+7bxUC8dZyieG8BLxvsxZS8MkecGsGeHcmlTdxHy
XPfv53PiXywTIM8NoLeln7hrXjOheG4A1gdnpXUVRmP90wA6J85dAjyaluK5
ATzwHNTT4Jge8twAJMP23tn4RoQ8N4ABX9euFNWJkOcGMC3Zy8NtnBB5bgAh
r4dM/vqXhzzXjdf8vKjAZ0zkuQFUD19zc8bcVqyfGoBHeefIMS+qkecGsOKc
Sd6pMRnIcyEcncp4adKnAPd3CKF+ZfzuSzMZqM+FEPRrTvC2BiH2UwghvV/Q
/ktOMqB4LgTm50kRMU/kyHMh2B6dcXD/YwnyXAhzaElnBkzlIM+FYPjO/LFS
Gop+uxBOsminexZytRTPhRCwKMYw77kC+62E4JbRK+Zisin2YwghtjmmKrzM
HHkuhNNXYkOH15kgz4Uw7Yz+3ydtcuS5EHKOcG+e2M1Hngsh/ldWvFdqAe4P
E4L7av49i9M1hOK5EPpP2WPbVbdeKJ4LwcVyohW4CIHiuRB+fc16vOKeIe5n
EEJx56qxK3vo434W3f0ts3ysGczG/YNCuLvft1dSeT2heC6E/F1TNs02+oH1
YCFwN8XlecXnIM+FoPV/sLP+W52G4rkQggsaaKd609FvF0K/i96Pio6y0G8X
wp+dDQHlt9notwsh7+0vUUkjE/12ISxNOamkPWpBv90QHKpTA67I87E/zBCm
b/m978zZEtTnhvDaS9PL/g0H/XZD+G68rOrkGin67YYwzqfnwLoxRui3G8JL
e3uD+f5m6LcbwnZ2XMg9I3P02w0h22mjUcVrY/TbdevqUehDZpkM/XZDaB07
9z/axA6/3RCmrHO5M3hoCqF4bgjLzs4M+3W5DfW5IYzl1e2C9QbIc0MojtJK
lNFi5Lnu39nZ9775ipDnhjAsyd5ul4yLPDeExhSDRb1DK5DnhhD7VxGQtCGP
UDw3hHdu60MtnGjIc0P48LJ/njSAhTw3BE6vOWtXOTKQ54aQ1phxaLG8o7/F
ELzcFn9sSctCnhtCQMA3es2KaNTnhkDE4ilNn9LRbzeEC9FdLo52r0O/XXf/
Cz6feezGRX1uCL15lVF0ezHqc0PwiXBPfz5UhvVyQxAM2/bG/3RHf4whBMUF
P5vNFSLPRWDsWj6MX9lCqPUugrs1VzZxZiah/y6CY/f31+p50bXU+heB5+AJ
8UFxAtTvIjg7z9PMcqm+looHIkiRGyl8nnFQz4tg7FunUd3c6jHfF4HDsow/
1b8uaKh8QAT6dmbb3sVUYf4vggcmub6XuTTU+7r7c57te+MuHeOH7v4OCi8t
HN9GqHxBBIsDfW2W2NVh/U4Erz+GctNppdifKwI1VJp+6ZGJ9TwRtMmH9PSb
+g39fhFssG8IS+r9FeON7vvClsS//fAN+3l197su1CzqdALW+0Sg/OSQlXDu
Ltb3RdA6KNe6ND5LQ8UjEXw5H/7wolkl5h8ieP/kpoT7pkFDxScR7KOPs028
2IL9giIIPby7/MfQFg0Vr0QwvPhNsqlbI/YX6b7vz2Ahs6ROQ8UvEaTP6Rcf
daReQ+UrIvjel/5pS+8WDRXPRPBj//Ve6skM9CNEIF7q/tWwno3xTQR9Bx4R
n//JRX9CBJlXx63au42D+kUEZXl7T07PpaFfIYJ3a/Vu3xxcjHpGBL3qOrvc
kJViPUIEP2vSvXM5PIyHIjh6b/G+lU9kWJ8QgQ/c7v16jwnGRxH8Deq9bpeF
JdYrRGBaG/ypcZMVxksRLIm6W+Nda4n1C9313yyp35ZjhvFTBOXDDKedyJRj
PUME1bLoJX/rGRhPRTAwb92rteVV2B8tgojsDc6+h6Wol0TAOjy9YUW6Oe6n
FAFn4bpr3VOtUT+J4JPPzrDUZBvspxbB6R+TU41/WmG9UwQyzY1lF/uYYn+D
CNbIymwmn5Ng/VMEpa/0lKPW07HfQTefVUW/9l78qaHiswg8piUFDHiVTKh8
TDc/Gc+Cxq1Kxf4eEfBU0yoPxr7D/T+68YpIe392czqh4rduvYliq1LN6wiV
r4nAjVZdtfx0h98qAqMFl/cP2KNAP0Y3H95H3HgUaIZ6TQwJz5dtbXGwxP4J
MbR+cgoZl2uO+k0MZ//L/tHwV4H9FLq4Qs+06+PPwP5BMaTQjRdWJNWhfyOG
4nADZheRFPWdGC5LB6ZO6GmM+Z8YSrOtimOMTVHviaHiYJLtrh1qzAfFcH/k
6RvHTklQ/4nhzvNhE7Yt5mB+KAafvuI/RQW1qAfF8Gnxqsk/m4vQ/xFDT+bo
E7L6MtSHurx+BWlrnl2H+aMYNKt2c93qWjQUX3Tfb/qzdGdSi4bKJ8XQZfs4
CO1Vg/pRDN+TnCbtvZSO/Rxi6KMXwNB6ZBKKP2Jg/0m7mNFWjv6RGHKmxxku
CCpDHomh+UeO4KV7LPpJYojr6T54zrsK5JMYXELtJtsZM7H/QwyHx5y6Xr2H
j7wSQ995BTdL/+NjP4gYshZNi5sygoH8EkPV1hVvX13J11D5qhiem8s69XIo
JxTPxHDrgt7RVdc78lcxtLglpEpc+Og/i2FLAPf+Wncu5rNiuDCllGsBzehH
i+HPiNAR9s1u2L8nhn0jhoUOudOK/rQYrl9uW3ymRg/rUWJ4uTFqOv+wGOvP
YrB4PcdVr7CjPqW7n/JetTl6huhf6563adrmvFIO1qvEMH/uw4obXzvq02Jw
1b//37kP+Zgf68bXNX/C1Fm+6G+LIcJxE922JgP7U3TjucbH+8CDAuSpGIZ2
cyNPNpZjfUsMmT4zeP5za5CvYghwuTOhcGsTofJpMaR/GWnTSUZHP1wM+czE
7ctbmFj/EkPJ+KAhpmFs9MfFsG3RxC5bVnbst9c93+Vzm/TiGchjMXzbfONb
53NNhMq/xZB05xgrbHcJofgshs++alj+xx77X3TvI7/YdsfxAtTfuvnJWzmt
bGI15udisPY0Wv3ZpQ73G+vm+2M9uu3uWszXdfdvP2RCQFC1huK5BHZpVo96
E1+N+bsEIrzark8Pa0CeSyD+v7pn23M6eC6BsaFmwA/gIc8lcDMiMu3rLSHy
XAIpp42Kg3R6g+K5BGZ/uRlw2UmE53FIYMmthKJRL/nYTyeBAFZBQ1hhM9bn
JMB5tGzrMe1T1PsSOGCzeFamaQP230jgSNrmv23GXPTzJcA6utw37YoB6gMJ
LOU6u73t31Gvl4DPp+MNwwNFqBckcPDKrsbiVBH6/RIQG42XukaL0Q+UwGg7
8f5LfaTo/0tgfWz42NGeMvQHJeDUatXbRiDDeoBu/BYOeS2M6NjPqPt8xoGa
I4OZuH9bAit+npf13/8BeS6BCytudmqaK8B6gQRGKh2Wfv6hQv0hgRHWPuzQ
Mx39ABK4V5o/bJfICvWIBL7VXxqe72eB9QQJ3Fphwpn6SYX6RAIlQ1zLN2j1
kOcSiL437ZLvxQINxXMJNDXpP47XVOP5ARLwU0+cIHVnYr+QBPpscB9YMoCN
/YES8PiU4N7pCQP7hyRwtvO1p4Zb2pDnEhi1L2ar66Q29Csl8F0a7W+cyUSe
6+bTzwrux956yHMJTPCcUrbQWow8170/wwVVnv4S5Lnu/aamZWzuJUKeS+Cp
7xsDh2wm8lwCv6fM40au/oj+hwQWbrCdfvQoHf1OCSyeYV427KJIS/FcAv6y
O2+vPZUhzyVwO2L/2aseMuS5BHocUqfljhIhzyWw2V65iOXPQp5LIESU7kUr
r0Q9JQFNZqn41MMM3G+tu++3cx0c1+WivtLNjyu7pxbXNmoonktAEaVODXTm
od6SwHGvNseQPiLsZ9TNnw1Xbg/bJEL9JYGPpVUeEVZc3H8lgRxvbeC4vhl4
foFuvMesfux1mo3+iwRCY2ouJzopkecS2O83NzuglwXyXAKPlgd+D6iwRJ5L
YUSEV/cnay2Q51J4tW+zkGOjQp5LoWz1+rbdXbnIcylE7K+Zed8nG/1ZKey9
FfOdtU6I/o0UYg6tPfd8rRp5LoXto/sfdeRZIM+lMPfdwE1eGy2R51Iwn57w
2LOHJfJcCkazJ609yjVHnkvhh9uwTle2qpHnUvjeX/DBuIsE67VSUMYnr0qO
YaD/I4Vfw7wj40u12J8shU0rh507lsLGfg0pvNl3zCT/rgz1ohTqTh/0mj7M
BPs3pNB2MCTrV5U56kfd9QoyZcUnzbCfQwp3Zh/u0ylbiXpSCo4zziVMu89H
/0gK3r1zbdcsfoL9z7rrfQwXpUTzsX9TCol616Z9TJejfyyFPxWZXktd1chz
KfRtnN04MkmBPNeN94CTzqobQuS5FOZ9jj6XdbBaQ/FcCo222wY/PleF/pMU
MkZPZO7w52H9WApJez/NS3otRJ5L4fl9n5Pfpusjz6VwceWkPV9DmchzKQhb
kjeY21Qiz6WwIujmtoLpMbj/WwowZd6us2avkOdScJ740K4yPoVQPJfCyxD6
hfFQi/uxpHCm7cybk32Z6GdJQbX4MR0kHfsxdfPPW/S7ZjIL61VS2PHH+OHr
zbXY7y2FQrBPYI15gzyXwqEJyxRFTY3IcylUDN814I0RG/0vKRiYHTlz5Cwb
z8uSAtNxWf2emGbcH6Cb38+mn/3E1qL/LQXxGb3o6rWtyHMpHLS/veGOTIg8
l4LvycTVwjgp8lwKWQeLiw+v7NhPIoWolJn60RdEyHMp8L6cuNBm38FzKcir
i9/Ma3qF/atSOJYx3HxcAgv9cymEjbKbNW++BP01KXycfLDpSrkC+92kMO2A
zaZrPZVYP9Ott7sX57BaJFgv162Pzl++PS1mY7+rFKZ8nD/86c5o5LkMTlh+
aWoZzMZ+GRlczrRk3rSSof8uA8FN54zBKiPsn5GBmTA44qi+MfrxMjBKyA30
3qBAv04GvKmDc41e8NGfl0Hk675J161Poj6XwbCgB+cuFuohz3XrTNj4+W6b
WkvxXAaV1ucWTMnuON9HBmVVYXYTflli/40MXDfvb2u+Y45+vgx6CZ6U7b2m
wH4cGUyJV4sXLWOjvy+DxuZx2e4r01Cfy+DOoL6HpxziIs9lkBv0Z7ayuYPn
Mji45cCtXnM6eC4Dz4eeFXQiQp7LYM/ozQ8OrmIhz2VwNHv6n8OjSrCfRwbj
qxYFLLueivpcBisXvbmz1KcEeS4DNydr48rCbNTnMrA2tkz0GJJAKJ7LoLXs
8KkN9R37eWVw/kRCVs2mBtzPLYOqlWMmT3eqwf1/MtiQm9i66WoSoXgug4db
1441W1mtoXguAwfLe339F3BRn8vgtIm+9uGxjn5A3Xi4idIieklQn8sgbnjw
cjAQoT7XzY/ra84PuMvG/iEZrEmseX5LvwL7C2RQ4PQmistOQ57L4GLO9RO/
XKqw30AG965ePhW9uhLrkTKY23Qmx2p4IvYfyGD3edqcEy6VuB9VBrQ9Sxlv
J7Dx/AoZTIyWakfnC7H/SDcfEj84puryf4rnMjic5GF/6LcYeS6DbgWfzn1g
d/BcBtOvfL/0hauHPJfBxoRRL/KyOMhzGTx79a2E+46FPJdBja/dsN17Ongu
g1sLA+x/XmWhPpfB1aQBHx41MFCfy8CjvzT8t0sT8lwGDbtPvnqZ+Bt5LoMx
7nl3FqsrcT+dDIL9qyuHPuFgvUQGTKMLJRnPRVgflcHqr8+d7XScpHiu+/zq
pyMDb4ixXqqbL8sTGHtmd/RHyEBz9Mjk6hE1hOK5DOINO615LMrH/dcyMCnM
Ka5uZOH+ezmcmPvEpcsBEfZDymGjv7npqLsyPO9GDoeW6oUskCmxP1IONRJa
RnQfFe7Xl0P33GM5+utUyHM5aLJPXTn8WYk8l4PPvJyJNd/kyHM5eEefXvfq
pRh5LoeJJbNnTclgI8/l4FZ8xirj8Hfst9L9fa+c1+4aJu6XkMPANPcrxrrv
oXguh7Cb723m55tiv6UcTIav/sYQWqLfKwfefafRo00skOdyiHPY/D2jQYk8
l8Mxr2mNXqZs5Lkc5u56eYirrEV9LgfCGez0MEOG+9Pk8DJ/WU1xtjn2b8mB
cfqcefoXS9x/IYdbY4pWOR0xw/qvHJoDH4/axRMjz3Wf14uIXHfzD6F4LofO
IQMtB3qqsJ9TDr7dw2uL22xxP7McypadmXfyQjfs75TDUNu5fO8wBzzPQA5R
Zt8Ml3zsChTPdffbbOH3LMwGeS6Hvi4Bt4++lSPP5SAoETcnL/9CKJ7r3t+9
UzHzszvOv5DDlRG+v1oZpri/Sg7nnv3pmsC1xP5QOUxI5G0rdrTAfnA5dDt5
ZUBgoBr1uRxmHjqu6PPUEPW57v2P8HcK3VCL+0Hk4JJ8uYfF8UI8D0d3vf1L
sgcfZCDP5ZC15ILJ3H489LPlEARtdqEpXDw/Rg4fv3Qriq5gYL1aDu5be/qP
MaxDfS7X5ds97w5N/4H6XK7TebnPVmh/I8/l8GxPf9OIkmrkuRymDSofWzqN
hvUu3Xx3j72xkMHB+rYcXkyV741dp4f1Lzkcf/v5UNodQ6x3yyFSPpiT7SPC
epgcwr/bmvcINMD6t+55Xh4aFxPAwvqY7vrDG1g2gwqxX10Ow/Kfv28Q1BKK
53J42HuvTqXqo58uB0vfuGs+urhA8Vw3X056Zr6frEJ/XQ40eQV7zX4l9rvK
YVbc242NVyXotytgZtwIk1HyDp4rYFbQIuP1Iz7g/jUFTL74fWexQ4c+V0Bb
66DgFeYi1OcK4Hvd6j3inAz1uQIYoQtXZJ+Xoz5XwJSHym7XVktRnyvA+9ej
M6viDZDnCrhW84DTT8lAnitg4fJwu/PO+ajPFTD/sUvFyfhc1OcKSL2Z8vXe
1Bb02xWwRPoyjN+FjfpcAYNHi/K023iozxVg/zPOotdYHupzBXxgGRkvX8NC
niugu8/9sh6vGtFv192/9NWSLiuy0G9XQHBv2xVOY7OxH1cBZtn3JcyMGvTb
FZCs8lnwelwD+u0KGNWjm7tFRAXyXAEZMVFjLSxDkOcKWHG3OuLj/WpC8VwB
6ifXdu+TsLB/VwHrCucVjo3lYz+AAlKO9Ol1ZyMf+3kVcDlp4cJPWgb2ByjA
OZL5uOv3IuS5Ao7fOc0xsK1AnivgSGLe0PPHechz3fONO/hk0C4p8lwBd7l9
mmVEjTxXwIvgXom/JpgizxXgxvuotc4yR54rwPLk3O7Gly2wv0ABm+v/O+8Z
ZoH9wQp4+32QvSTcHPsNFLD9dmbvqo3G2C+sgEG53jsTazvOC9KNX/emqLMi
BvYPK6C6c82z108rsb9Q935OJVo5hEpRnyug8KH/058FFui3K8A0RGn/zcsO
/Xbd/NxYYZayzR77FRQwJOFNg+icPVA8V0BdpaX/7N922L+gm7+R9aF/Cy2x
/1gBXGi7EN1Tif0MCng9pd8eKzUT+5EV0Dhl3tlnbmWoz3XzyTo2JLzKEP12
BVh1inpa42mEfrsC7oxZUbB0uiXqcwU8XeqSd1Fsg/pcAX7Okz9mWtqiPlfA
x3vjWo+PtEF9rgDld/XDJYstsV6qgH6pO4emealx/4ICTuRvq109Wg/rpwpI
8sg/V8tKQp4rIMFrdF3bWBbqcyX4T+PMuL+n4/wFJfim9WsMNlKiPldCxW51
+dkfStTnSri9NW/w7h1y9NuV0L9815LPJmLcz6iEtqRu9gFruFh/VcLVTZ4O
oep6PK9FCWlTVUfo7g8JxXMlpAYevJttWIv9lErYEVPze9DAjn4rJRy7PrNK
nyZBfa6ELr08p16YoEJ9roTGrs9FPmGmqM+VkPdhkaOtnwX2Vyuh9yz1u08n
LXD/uC7uTc1fGHTCFPutlSA2i/Vrna/A8yOUMKSXg9SqDx/7r5XQettS75rN
b/TblTquvhnUPa4V/XYlZF+27W++1gD1uRK8VW2dvEdKcL+VEpan1O7au1iC
/R5KcKzdFbuNLcL9V0r4bBH1rGkAH3muG0/19MXbFjGR50owzPSgtxbSkOdK
WMSj7+5VwECeK2Hihf0nuzbxkOdKuJFt8jzzvgh5roSImU2dvujyXornuvda
tc8nnK5Efa6E/2Zq6j7PV6A+143/lOADl9USPI9aCcYzD30q2szCfhIlTHh/
9NAq1+eoz5VgpLfnzf4WHvJcCbs+vvfJcFQhz5WwYsHp8wbfLdBvV8KyophO
dx9ao9+uBLtdThvNiQ367UrYtG7bE5+1Vtg/roRV1zaviXHtOO9YCVU/5vn0
Bymef6mEylAXI9Xcjv4UJTgcPnRp6Ysc5LkSQm7G+U04wsX9obrnux8Wu+s/
KZ7foPt7m+U84Ro17i9RwpR3tf1XFZmiPleCNe1U7aHZFqjPlRBwSCQiNy1Q
nyuhIeOWq4GZOepzJWTtlI8c8F6N+lwJlx+65eRuFuN+FN3vOx/UvZrWjH67
Et51n3voSlkp+u1KCN63ZpVNFh/1uRJG11yrSDghQX2uhPd/3v2581/H+cW6
+wkJ2qz3Woj6XAmJgT1a14W0oj5XQR/XZYtP7kvB+rkKREMGBLRuZ6A+V4Fk
PWmuHy9Afa6CV0Nk+t1duKjPVbDN7Hizk7yKUDxXwSo5mxS21uH5UyqIq5W9
TKgQI89V8CAmf0N4jjHyXAVPcpNO3PK3QJ6rYMwZi9sup8xRn6tA3KU11n+t
EvW57npRZxJaTFmoz1UwLn9vc7W8o36ugobrsZVBV2XIcxUEhI6/brXYHHmu
Aqe2YRszWFbIcxVUHVwSYCSxRH2ugqiAR+ymT0aoz1WQeMnizwH7Dn2uAl5U
zL7sa5WE4rkKgob7rPTYVos8141fUdCkszEC3F+ngocDaua5de04b0V3/w2+
c40GytBvV8Hcg7QjkVIZ+u0qsFvwKdLWSYJ+uwreXz5p081RiH67CuoPBOc/
2s1Gv10Fiwq9qi7tq8H6uQpuPfPXb/B7h+d5qGBX1argiKUteD6bCq6p91oP
cdfDfkAVHB8Q4vDCXIp+uwpGLFjY5SVbiX67CtZsL/Ay+K1Cv10FHnDxy6rl
KtyfrwK4FF8XHSHH+rkKLlUOvFtsLEa/XQU2vrE7zVdz0G/XPc+L/sVxLpWo
z1VgZZ1w78nWbNTnuuvfSbP8ZNBxvqQKYpZFLZAYd+hzFZDvNwI2PpWiPleB
7/yCpM8TFKjPdeO93zohcJAC9bkK1h4R7i6e11E/V8EdwaAX1i76qM9VYEZz
7a53vFVD8VwFTZ8PVBat/YrnAaigH93xeIJLKaF4roKVz+dt0DtYh+cRqmDd
967zPZo7zrvQzb8NkSUFP5LxvFvd/YhDL4LZX6yfq8B7xBCLsZMYyHMVvO01
5C9jHh95roJB45KLlJYC5LlufBwcTV46M5HnKpi55A67vzwPzxdQwXzzxMZD
qfWoz1UQUtTaRl8lRL9dBfp8m57ldAXyXA3ufzO75r5SIc/VMI6Zv37UAQXy
XA2dL33abzzWEHmuhndl/u+fXavF/ik1LNRmdXkysQrr52qwKnhWkR/NR32u
BnPW+1OWPBHqczUc+Bu39vdYAepzNawfsTWrsKQSea6GwJbF1vT9zXhelxoe
f0ra8mGNFPW5GhYR2ZcVSlPU52qoV/W/fTbDAvW5Gnra1S16280C9bkaVOvz
T0b4qVGfq+Gq8dGMMRIh6nM17JVvNbUPK8Z+TDXQUyLqHF41oT5XQ3ggk7n1
gAHqczWI7a/3efhZivpcDQfHVNR2eq9Afa4G413uwe/TVKjP1cAbP2HqvBoj
1OdqaFXc2vN6tSn67Wo4vTWy/+1X5ui3qyH2lOpJ5DwL9NvVMCjF15H8MEO/
XQ2Z5YOm+BZ3/P8Q1DCyeOKsLgIDPF9BDaOZ3xMvpz3D/ddqGHPui9aHa4g8
V8PYr1tv9NhjhjxXw/SFnYfdyLNBnqvhRbldddbZTshzNcj6rO7Tq/T/ms46
LIulDeOUdPfbG6RgYoDK4VEPITYGFgYHEzsOYmGBgdiFnWBjBwdFQLFFRUAU
W5RSUZCOb76L+/2TS1h3Z2fnN/f9xDiB5xKS7322f4SriHxwCU0bXP8hIEiK
fFEJNeb9zD/QXd2fVEKL/1sd9WrhB+hzCUVI1sp65BmD5xIyLvzVqvVTO/Bc
Qh42bvatjyrAcwlNEC4fKGLj08JzCf0JHj2e+1sJnkuoo3jdhaZIwHMJXQsd
f+/0WfX5FOx+9DfN7vyoGfpcQnYeC84F3f2M+LmEBhwNMV/O9H8LzyV02uTR
mrQz6v4tEiq4FF2jHG0DnrN5dCmqMW+kFXguoWd3b+aedTQEz9n7WlidvmXJ
T58WnktoxWwD51GmNfDbJfQz7vu7rNEm8NslNOh1/cy2K63ht0tox5a3uWPf
qf12Ce1UNgZ7mdmC5+z398em9qpR++1sfvZLib/hZAKeS8h7wRTHQy7q+nMp
Xer7Lb/94l+In0upfzsrvReV96DPpbTBv8c/0V3+IB9WSp1M8xYWO2qC51J6
rdHEfVujDb9dSmMyRuf/c0QDfruU3OrfX8u8XY56Vil1PH2itNnrA/LhpPRk
2Crve+Fqfc6ut/bdwAe1ZuC5lNzv7L/mZmMDnkspMjCw6eJuO/BcStkPgj/H
tLaD3y6l9jaLDr3+YwW/XUojct4FHrcxQT2slLyednttdrsptYXnUjJJPDEm
4HYS+htK6eidZ+0KM+qhz6W03EDr+AI/Q/BcSs13a83cblrAb5dS76LczQ79
rRE/l9LXe8bvTGOtET+Xsn3D4eHPxqvraaW0zepda17HGPn5UoreML6tno0G
9Dm73weVMoezr+C3SyltjtevtlPKkQ8npWdzm/02KZqQD8fGJ3BFjw+TmsFz
KRWPPpGxz0btt0vJ9HbnG736xoDnUpL4bf1dcbkK8XP2PCceXX/4SR0/l5Lj
a6tq5yhd8FzK1scVSdceq/tvSEm3+cBRzdBSxM/Z9YZXVGTUlaLfsZS66Uk/
elZoQZ9LyTD8+R5hgj70uZRGbfS0fj5LB/pcStWG97N0T5eB51JSpgtFUZ9r
oM+lZFTmee78NXPoc7aOBD/3ndxFAn0upZKZX2oWxyugz6WUX9HvmFOpHPpc
SjnDH5/Q22gHfS6lQcurJCbmptDnUrY/iPL69PUP8o+lVH56tYViUhF4zu4v
sd/bM15a8NultDhk+cCx0/Tht0tpmEbnJ37zDKDP2fxNuJy4xFsP+py9j03N
Ol8fa0OfS2lVtlbSgW4a4LmUbk2PTfL1qkH/SiltHT3/nGPRV/QTkFLXmpjH
3Y59Rj6clPhJDYfDjqr7F7Pv68rlvZssrBE/Z/fn7Htl9k8FeM7uP+7dxWGp
Anguoxtf59z91NYBPJfR63+skxpmC+C5jD6apf/LbZSC5zLKGda7OjxGB/pc
Ro0h0a9/XNKG3y6j1ODcih7p6n7VMirdMbZ/6GYX8FxG3zLrhnrXtQXPZSTr
TdWxd9vDb5dR7/rKQ3p320Gfy8g24XHhlSeu0OcyisxzTbWeykGfy+hwff+f
I/doQ5/LaNJfGtMc2PfUwnMZW3+qvk+bzIPnMupTnGc1bKMLeC6jz38Chpd4
u8Fvl1HgiK+Xwy1cET+X0b30qrJJuwTEz2W0cfCOXeUzLBE/l9H+OS8ORXf9
lNrCcxkFfahckVxpDZ7LaFFA/20N7XnwXEbrePunY0Y7gOcy+mutZe+ZBSJ4
LqPQfW8Kuw9R81xGQ/ckbl50xwY8l5HGgAndHkVrg+cy+mnT7U+bwMeIn8so
+J6C10jXgD5nz3fmUkZOhh54LiP52bNhqb91wXMZKVYOv7VjU7NPC8/ZeF87
4THzr4+In8toxJbS5lWV6v60MrpU5dNrZa0e/HYZLYgIj5j2wxL6XEZzR/Uc
2LVIrc/ZfOmzfWlnmQL6XEafOkQY7NylBM9l1DR/4QDaIQfPZRTzYF3d1u+2
4LmM9sZcuzevyRg8l5HkUetanfRKxM9lVNgv0XFB5Bf47TLSHZ4aHhpVB30u
o5dt3PK3KmqQDyej8umbv1Um5YLnbD7t7dN8uEdlagvPZeS/KMgm9rsO/HYZ
Se098y189OG3s/n65+SeOD9N+O3s/W1IuBxiciu1hecySvjhvWdqLx3ocxnl
27YOGPTWCvpcRuHB3c7Ux0qQr87G86+wkmFs/WrhuYzEZUbby15Ywm+X0YzN
5noDj2nAb2fX26krz5xWhHw4Ge0u9Ok7+Y26X5SMPLoHvPIzNQfP5ZTy37n3
+5xM0T9KTiv8EmikZSvUo8vJ7OmolMXbKlGvKqfakGmNP3vno9+MnPZtig4q
CM5F/aqccs+t7fq25hf0uZw+2h/5fDVeC/pcTlX84w9udur4uZy6/VM7wG6u
KXgup/kzfKYevmUInsuJ87zpHXJLAzyXU9qAEIdpOm9SW3gup5H1XFQP3Qro
c3b9q+PHnDutPl9ETnMjCisCYtT1M3IyHxJ8f/isVtDnchpv5G/tymtCn8vp
zfv5Cdljq8FzOck0TkXkBJYgv11Oc/oF6kcufA59LqcdftnrNMc+gz6XU9t/
de0dR5XBb5eTQ1DcWp/B9fDb5fR0xmWLxAutoM/llF6WML6Hgyn0uZwmS7sM
Td+p1udy0v2V3PzPZHW9rZziQ4+k93lgBX0up5A9sXHTl5kjH05Of2bfSqpe
0wr5cHJ6uyvvU2FoMfLh5ORm+shOS6nmuZxOZZu9rP1pDJ7L6XtS9ZHCQ7bg
uZy2lb6xOvBGDp6z/6/iluSMBgd9Lqd1neY+29ZOBX3Oxj8lXihg+7YWnstJ
sr4s4sooC+hzOV0KaderW0Qt9Dn7d8uUngGa6n7OcrJaNbN42mwj6HM5bV4m
T7iYaAl9LqfMtJfFQ3dYQp/LSdPd96r2bPV5CXL66nnlYsejf5DfLqf8wzs8
tzWUo35ITpcvme/ZUmcAnsvJc2mHo1MaLOG3y6n/GLeVhzxt4LfLKXZFh26S
nVbw2+WUWr0gxW2qCeoJ5TRRPzhSd2kT9Lmc1hzRHjB3xW3Ez+V0LOfZ1rvD
1PVHcgo7kJx+vsgMPJdT4OmEYIf9NtDncrLpmmX8q9Ie+lxOB78naudMlkCf
s/kw91x98F5b+O1y2rIqL2fOLnP47XIaV+F7pCKzGX67nLIf6g83PfoB7eAU
dCwyu1neRg88V9Cn1bImC7bfbOG5gu7rRVomxVmD5wpKHFy6ILmfBXiuIM0G
ecifdC347QractCvQy/bR+iPrSDd3auruyl0wHMFSde7ZsXrqfvjK+jDSdMj
X0cagecKevAyoveo5GrEzxVU2+9yeZ1uLfoTKejdoTvrIqdYQZ8ryN3e9MjT
ner4uYJOJCac+ZOv1ucKWnTHse/9OCV4rqA5G8c4lgfagOcKinlvFL3SSgs8
V1D0oY7ab59/hD5X0OsfNwNNOmhBnyuo8/Ayrc8l2tDnCsp5NfjOGL8q8FxB
78dGGrx0e4n8dgUdmrzhxKIXdchvV9DSTjfbXI1pRPycjV/InLjDzm9Qb6kg
5ZmUS3HZWuC5goLbi//dTLIFz9nzvNvUKukpB54rSL7zYmyTjrp/tILcfnUK
0szlUK+loBHl4u7v9dboh6igCN+Rej4exeiXpqB+p9fr3XtpAn3O/t5pZZyx
Qg59rqDU1e9zG8I46HN2/xF/7sa+lkGfs/sxWLdvkpUp9LmCLk5sVbvgxBv0
Y2HPv1j7UVCsOr+dvSfTogfdq2TgOXtfM+MfFLZRgufs/fbuYO99wQ48V5A/
5yCN2Kfuz6Sge35r1tdn1aI+TEGd1js3pA+zxXkWCtqUc6a7bbr6vDEF7b6/
yHPTQwF+O5t/J3/8+WDAw29XkH155oH+y+yhzxUUtejJjzdr9aDPFeSq16lg
cFg6+usqqDenGnExTws8Z//f5zYh20sNED9X0JGJ7bpG++sifq6g5qjA6cO9
qqDPFRSwPW5l99AX8NsV1Hd09LKP0TWInyvIsJPjhWcnG3xaeK6gMT/GVvdX
lPi08FxB37sOT65zqwTPFfRkcFBW/C4z8FxBIX6nxc/WUvBcSWGKtPbbJnHg
uZImlZn1bJPJgedKymh4L+VHyhA/V9J/A8f5bFeaIn7OvhvjdYtdEjPhtyup
8U7U1yUd1fXqSuqzfdS8W8tkqGdV0oKeBelVB1ToL6ekQVnDjkwZJ0N9q5Lc
owoNtoeYoV5NSXdeW0klxhmpLTxXUsgs29r6MAvocyX9/jZjUeR8JfS5kjbM
+Hk110OAPldSpwVR8YuyOOhzJX36u9/UvsdsUf+upGEDu+6+q6yBPmf3E1Rb
ffW0Pvx2JZ171ylzyxg59Dkbr42LX0+ZKUKfK6kqf3nftq6O0OdKutvon3p9
rQh9riSTfRZ1b98roc+V1Lv5W7uhntbQ50q6mRkxL95WfZ4X+/3riyWGHe5B
nytJt4dFpPP+SuhzJdU+Wrzl7N/N0OdKuvLyZEnYiybocyWl/erx4KF3NfS5
kgJPJmZqHiwFz9n7dO1RO1TjQ2oLz5V0ouiW6Yi9X1Cfq6SHZcmyO77VqMdX
0nLt/OyJM/UQP1fSHC5yaNI6K8TPldTwhIZtLJIhfq6khPHDjX2jeehzJTl2
sF6UHCdCnyvpNT0yDBwuQp8r6WAXR8W2OA7xcyW1SrTul/nIFjxXkvUuIXKi
nxZ4riQN70WhH82qkd+upAEm/oWFm62gz5UU2mfry2dsnrTwXEmx3rcqPewF
6HMlzW701R21QQDPleRgs7g5+xwHnrPr900uP9xdCp4rKXlk9K/6QRbgOZtf
5FK6e4wGeK6k6I1zStcdH4Z8OCVNO+Zs1zFand+uJNdRPXo+cdEDz5UkORqa
30nTFDxX0sjWGQEOrSzAcyUtMfnRv+1aC/BcSTphSR8yvMzBcyVdmB/5x2yv
+vwyJWkuL9gpdW/EeRRKupgTNUs0vgieK8l3Z0bjqkEN4LmKLvee4dVnhyF4
rqK/v7lr7f5iDp6ryHNZkK5QZA6eq2id76Fc7yhD8FxFl6ZUbZu9sR7nHaho
5A+Dxx0XXwPPVRRy0bPr369qU1t4rqIuxU52rXdpg+fs+nbb185crQ2eq6hu
YGRe1Ox68FxFv7LGr9Lb/Bn9iVQUaFEZ6b73rU8Lz1X01OV2iPmj3z4tPFfR
iEMNhdz7P8hvZ9evdS+JV/5C/yIVfdvxbtyGkQXob6Kir8OW3A6ryEa9moo2
h8yMfDuhHDxX0UKzTvzCqFrEz1W0+9uicT2S1f1PVLS61+Jx4gRN+O0qap2V
HVVeqgF9zsbnSmb86Iv1qS08V5GPUm//+OgfqFdTUfzTKeMKKu+D5yoaWDjM
sWNeDfqfqejY5Pk3nWJ1ET9XUcaM0vGNlcaIn6uIdvvnuhibIH6uov/ODzP0
iFefB6Ii73VNTdHhP9A/SUW7suMNk2p/g+cqeh+w26g8XN3vWEWaZS8UTcfN
kA/H7jdwRe7XQUbIh1PR3sQh7Q2L/iB+zsYzdvLb0R/rkd/OnudbZHutMGv4
7Sq6t+ZUVZymCvntKtrS4d/PI0t45Ler6O75lBfz2f6rhedsfl3NVMw6JEE+
nIoMx059uCTDGPlwKiqvWhNRuLQUPFfRnuMO05o9fqFfk4pq++RefSFtQr9V
FS0J+qlXk1MPv51xJjlNe0ZmBfLhVKS9tTG0XdQv6HN2/Y3vtJ4sakxt4bmK
1oQM0tJfbgx9riL/ZtHVs7sdeK6i5i+zrEY2KsFzFdWIpbHrfnHgOZuPA2MO
/pmqQD6cirZZ5u58428Bv11Fsl5T+gw/dRE8V1HAeV/fUx3V/dhVNK1zO/8Z
ITz0uYqGHTK6cmWlI/LhVORx22p5kK0j8uHY+56qnVwTwiEfjqM5RrpLn022
gB/HkeWoZQnmfscQT+eoVY/50wdXmCAflqMZiqyVgq4EvOfovXxZaXOaHPmx
HF13KqrqnSwF/zmSXz//vu9/1siX5Wjy1KR9jXUG2A9wZObkFL9v0R/Uw3AU
ouvyhvN7jv0BRyW7DEJ9k2qwfnB0zj192JMtOtgvcNSxY4Qb98II+TgcrenQ
rM/7WmD/wFFTYULWfd4a/cfZPn7Dl9DnOTbYT3B0PDd1W+9YG/RP4Mi65nGo
/0lL7C84mruvIIWfYoh+5RzVLEnd2vNWtU/LfoOjxyV3D+navcV6xMbjvzMj
bvXUhJ/AOLH5KdfhsyH8Q46e9h3fY+lNM+xHOHLXen4m3MkcfiJHX0/MG1WZ
Y4L9CUd6C4QbY+4bwF/kqOzhl+0n+6nz99n45ZR0V9loIh+Io179XHVzbtSl
tuxfOHq24p1/k0kl6nE5UkkTuln3LkW8gaMhz2PbFOkWoD6XI9ugvuURmdOw
v+EoJrAiOeXEG8Qb2c9ib5eJI0rgX7B5dExxRPLyl0/LesjRjhMhEyI01f25
Oep7PfauZsZv9IvhqKjtjC9z8ovhb3AUfiy3+EmPS8g34ujKhxsbD3f9Bb+D
o/9S/5k5/Y0O1k+OKO2FwneMBfIT2Hj5L9e58tIO6ylHkWMkk7f6yZGvwOZb
55HLbHop4H9yVJiQ0njik7q/IEe1Hl4FA+WW8EM5+sh3SQpeVI9+ABztdH42
6s73aqy/HCmOh99dVqXuX8TmZ2h77x7LpMhn4ih+e9uPU7YpkL/IUY9RAU7L
Z0qxPrPx3p2ecj3PAvmM7PsKVVoubVuD/pVs/B/zSw4NqMb+jCOHouPmyzzV
8VKOXm5L02htbgn/hSOhknTTfcygzzhaup+cg8M1kf/IvicLh9z926/ifBCO
ui6vaapwqoY/w9EHjVSTtbb1yH/mqPvPHd7c5Vc+Lfs79vuzvIUbnCbWf47G
xhv2LepmjXxJjl6HHvHyHqDOj+ao2FLpruuoPm+Hzd9r4dlJ22TgA0flOyf4
XDc2x36Qo3VPrw7iNz4AL9j3kz5vm222EfweNp+eSpf/a2YPPcg48GbNmTxO
Bv+Ho6CwPuEembbgCXse7YUe2ZEG8IM4urAu5eSMrrt9WvjCkes0a9/UBD3s
JzlS+pgu2D9PfZ42u7+V8x9P322P/SVH0Zv2/Zm6yh56kr2viWc6yubZYL/J
0azjz6/eKTWHvuSoqn/HX/nO+th/Mp2bUlwcuakR9Vccmcbafpx8vzC1ZT/K
UfO6q2d+LvgEXrHv21Yz6GBiM84nYeub2bjRrW4aQY+y9advfMeOy62wX+Vo
4qiA2e+/2UGfcnTWfIJRTYAU+1eO7DfNdOnUU30+O0eOXd5x6Vr22M9ytNpa
Z0S5vzX0K0cZo36ZtbMyx/6WI2MHQ+Wpw/rQsxxF+VzY9bpBC/tdNh9eLVGc
K2pEvxR2PzPi5GldqpBvwp7P/X7IonWFPi185IhzmtJ0YeoH5JNytK8hIvyc
p1r/svsZcH96llTdz4GjvT51Z9IeycBP9v0P2uW+uLWAeBbT5SNeDp+c4wCe
ctTpal2+cStH7J/Zet9199Oi9gL4ypF24JM/m9j7bdlPc5Qs7XW/6lQT8s85
Ovqv7qPb1/RRb8LWt+hgC2e27rXwl6MvQ8UOk1JdUH/CUbcLz4eNKGkDHnPU
r8bM3jGmLepROOqTPZ6+yFuDz2x90JvaPo54xMs4Wr5/g9HmqlbgNUdd+jqr
7EyN4bex+XIr1ibYQoAeZ/PrvndGq2ZX9O/maFCIfsnuhjbQ5zy1S9KwzePa
op6Fp/mftENmublBr/MkLNfnnnBO4Dn7/R/znENeqcBzniKo/YW8IZbgOU/t
LxeuGs32Ty0850lj/OfDowq0sd/nyebG7g3P3tkh/s5TocJy2Y1uAvb/PA2s
OvbdotkJ8XieBtTa6gV3dYW/x9M4Xb3flZou4DlPg3tcT1E1CeA5TztH3Qnz
bm0DnvP0cGF8aVPWfuTb8tSs9f2EJ9nA7+fpyP7dbef2FaEfeJp33CPI1ckF
/j9P3RxGXenc1wV6gqfWXhNSn2s7IB7A0+rw9NBvoRLE/3hamlqU8mKNmuc8
SRc5LP43sgr+IU/9/dOa1o8wQf08T0OO2RVm9bCAn8jTrOUBc4IijZGvz5Nt
0QetuDAN+Is8xfgYrTj14hP65fAU1lsa9NLrGvppsH1dW+tZ73wLUJ/H0xfd
tO+9xmrCf2TjscevX/+Vlog3sOs/aP2NzOTwI3kyvhH4jy2bxy085yn6Yfbe
2Rs4+JM86ezJzLpQZQ//gqfOW0ImnBqrPm+BJ7vCC22KO9ahHoCnMUk2vmmL
beFf8vT6pNBRdzGH/n88iXfOZS9ew8PP5Ckv7XpJ97cy9Avj6fDG6Qd7LTAA
z3labBpmrck34HwensaW3Nu3/70U+cU8LdhUEnZfyxF+CE/3w+Rprf1ckG/M
7i87/lAvByf4Izx9946b0X+sAvnHPL1YsJ7X6lCL+kGeShqn3Pu2zRrxTp6G
fz51eFaDE+Ih7Pn66rQy79wefilPCSXPvuwa1xHxEZ427el95ufxDvBPefq1
YcPLstPuiJew+ZSY2333NgF+Kk97rKbbT+1sgvgJT17xu02X/luNeClPF8K6
tjPnbNDvkF1fR8dqar0C+oynDiaXrt5k3GzhOU9rHDWVsX4c4qk8pU+OmmIY
oUQ+JBt/P9PRpcvkiK/yFBo8M8tGIUP8hadzvfX1nZMk8Gd5auz8NHF1lToe
w1PHYVGPUx5ZwK/l6dT5wwdPrtFGfIanCbk3UvpHJiMey5NpkHX+1WutwHOe
Hjw++/t6qSXiszzN8Zi8p/KHDfwenp679tFbZaOO1/IkN9joGLS0Aeetsud9
v1GYdVALPOdJ127AkAkfZOA5W18unnS7qXSCXuRp3YR+w9zM3ND/gCeDB3dM
K9zdoB950q+06lP8xhH9ENj6ULXL6GGQHfQkmy9HEiqe6pahHyRPw37HkNYT
FXjOU615raW7pjt4ztOTQ4UpZ592gH/MU6frO2683d0R8SKevC99Mevm0x75
Xjwt2thV126PE+JHPEWdsn6aEGiF/C+eTph+OL7Jogn9o3myv37UqtxPCZ7z
pEjXNPe96ASe89SzfWZtjz2u4DlbDyr9LaObncFztp5sea1jniGA5zz99XXA
ibwgW/Ccp8iKJTOFIZWo1+bp9MC0y9//1UM9J08jVcmr+jRJEH/mySN4ZOHS
eh75Jjxl13rO6+nuAL3L09Dlhr1XtxWRf8JTcerYzgVlCvCcp17LBw1celpd
L8K+r4q6aY1uH3A+EVsvHQNiVJes0S+TfW+Df8cZBgqIX/OkPT/M/4eZM/rl
Mn49tnySNscZ8WyeKg/fXvfYXUS9KONdw9BszXbq8wnZ+A/JHvez/Vv0d+Lp
a7xuet18db04T5pPPwau7s/DP2Pfb6nfe+sXjshn42nFoONLiq2c4KcxnjSM
mv2pm4D8NvY9p2mY1c1Xx8vY7yf/5W/aoPbTedq1KvnqAwM95MPwNNV7fsWR
cHvocbb+7Loy7KemCvkxPAVOLsk53UcJfS7Q47MWruEf1PmvAk3bODw05qC6
fo1x9vlo6dee31JbeC7QzvR/unuWmYDnAsWM1TskZffXwnOBzO/YHDCIt4M+
F+jcan1JlYsl9LlAJ80v77LTa0L8XaAbV/3Oj9SsRv6sQHWJ5Vz4DEvwXKD6
6JpAizgZeC5Q1ZQdHT7aqMBzgTwKJp6dHCYHzwWK7VzlfGmk+jxvgZrCUtaW
99CCPmfz1mNtjdeCz8jHE2i08KZsoL4eeC5Qu0E/yoI7mYPnAvWV1apK3puB
5wItC7h6cVV7PfCcjVd8Sdi9QZXQ5wJtib7v9uJ2Lurr2PXs+/lYpdWA5wIZ
y2//XF6oAZ4LFLd0mdeBx+rzOQXKnZb47KV/PfIBBNq7ZrB/e121vyjQ2QDD
XxMfvAXPBVp03u1329gX4LlAySlxfLGqAvpcoB4DdubtMNJC/Y5AJRmZ2iNK
DRFvECjaY2LnbQMsUM8jULHRyI77b1vh/AyBtDKfpPcNskZ9j0Cvsg7Z39Cz
Qn9e9jy37Z6m9TJHvY9A3cv71A6u0Uc/T4GOF7d5XstrgOcCaf/u/MTIowT1
fgJJi9I9Tqe8gj5n8237uK2H/dTnMwqks7De5tpcTdQHCdRt4Wdp9n9aiGcI
tC0swse3SwPilwKN8Dji2fQhH/2/2XgcdfIcZ18L/1OgsZm1d2OMTKHPBZpv
1kd/wChb6HOBxrw5OEKvXIJ8BnZ/9sO7fO9sD54L9NlhUNe9uhbguUBu17KC
nkVUp7bwXKDGF8lzi+3q0C9AoPyamTu/NJtDnwtU3fFDWompHfS5QBMuZrXL
vWgHP1WgkIsn+ix9YIXzRQTaILURuscbwV8VqKAwsiCtURM8F2h46NdVk/9V
50MJVNZn2anB0QbguUC+pzYtTlmrrkcWaOsBw9Pm41XguUDTnw/1vt9KBM8F
8p9658WJrwJ4zub3VbErvZSD5wIdPqxZeLJaDzwXaNe88X2O5WhBn7Pv02Hk
lfNnldDnAl21bOvZ/aAz9LlAh0yyl941cQfP2fhOnZObMsgdPBeoc0FDztq/
XMFzgVZpF6+5EeYAngu0vLii05/rSsRzBHJ5+nLkafb+WnjO3l9m1R1Jsxni
OwI1/Di/fMwXHcRzBfo+NHhoTsaP1BaeC1RTtTV/1pFK1EcL5DrlZP2V1ebg
uUCOp+rSs6Pk4Dlbv3Tfz3xvJaLfkUBpXpr84zaO8IsFmuyZoJ2+SET+JluP
vjj+GZYog3/8//XgoqdvjA7yOQUKy6oqme+jDZ6z+RjzwLTdOhl4znRKWWmQ
+0kRPGffQ6uHYe+cHVG/IdCm9U8OZhgLyO8WqLXbmrqak7ao5xDomFv5otDG
KvjPAtnpFHirduqA52y8TYZbxD20Ac8F4n0//zv6rhQ8FyhIU3tNyFB1fReb
X39PW+8abAV9zsZ7/1LNVYPU8Wf2vd95Erp6eyX0uUCaPy22tbv3FvqcrWfO
Y6wto76gPoStF1N/dzw0pg79TwW6+S1hr8YAfZxPI5AiIKvRqVTdv0WgpEHt
XVzuWILnAr2ddnrCjCnm4Dl73tPpw3fP0QbP2fyLPb9gsNkFxLMFemHKHxo6
SX0+JVuPDD9dPz/OFn64QM4r71XP76Y+z47xJT3V6cAHDjwX6MjUK/saeQ48
Z/N3dFObghoJeM7GZ8CIsBGnzMBztl4mVOjeyChGvzeB9He3Wto5V53PKlDW
pi4mp+7bQZ8L9HrmzcPubB/SwnOBbrtElPHHncBzga5YmTuGHHAFzwXSfX0r
N7pDa/BcJO3NI2oS3ziD5yJlDZR+exwugOciDfFNKi1YYI14m0iXwupGP45J
Q/67SLO6vC2Zm2UFnouU4TBjy+tlAngu0l9vIm0sXzuD5yIVLB9X61zlAr9d
JFutvD5DMh3Rr0KkDYeCL12JUaKeXaTLE/rv9b5gjHxa9nNC0pQJFx/jvDeR
qjy083xEdf2rSGlHHrg1nlH3nxZpb9X42oieeuC5SAYhWQ/6KF+j/7xIktHX
Uz630wfPRVLk/fzrUpAUPBep+U4rf6c/Angu0lGbNs/1ujuB5yKtyr9/V2+U
E/S5SDkZXz2rR4jQ5yK1M9p1ts1lGfx2kR5O97edet0IfrtI6+buWpnc5gbi
gyJt7bxm8ISHBtDnIj2v6v/uUhdb6HORrOYvXlaXLUO+n0jBR2WXfbSUyAcS
yd2/8+CPC9TnYYj0c9xSp4clUuhzkca9fmO8ku3fWngukunY0ONzNltAn4tU
UdDs4uelC30u0g+vB2V/J/+A3y7S4qVWKw74l+E8PJFOFrbeMP2JNngukqf/
sjdry43Ac5FcLu1TvZyorv8R6ZH0pfumaD3oc/bzx9v5O0eozxMXKXHnKKcT
ZbnguUhR+Z8ezpzSjP6aIuk9+7z+xh5d8JzNx/4TGnfd0YE+F2nmLZ+/XWIr
wPP/zxdN99zh5eC5SA6yivNPHhqD5yK5hSZuddtoB56LRH46j8pjFOC5SLWq
V+Ftxqjri0SSW39bHzRaAZ6LdHXsprarb9tDn4s03vPins3WVtDnIjUsrrx8
yMYI+py9H6/ksvv+mtDnbD6tK438c6wc/b9ECrHYPiQvJA39BERqDJHG1gys
gT4XKfMNrbpnYQCei9T302+3Y55W4Dn7/hKebTyRZg+ei9TjRMjTS6tl4LlI
v0em7rMhKXguksdmzTjLddbguUgBmzoE92lsBZ6LdL9svW/G2gc4j06kr99D
tk8YYAC/nc3/iNDVe/vZguciXfHqlrm0Xgaei7S6XeTThF9y8Fykyc8OhJzb
JwHPRXqhf/t74HQr8FykI+/jFn4+ow+eizRyso1zoVUtzq8V6Xov627m7Qqh
z0XSel2dzy34iHwsNr//TgrZKq9IbeG5SPcOXDuT56ANnrO/Lz0+vElpCr9d
pAXSTfKfQ63gt4uUHsK1PjnXGn67SF2LbqV3/mkOv12k0PHBf42O0IDfzr5v
PUvdVJNK9DcT6VOQVEwqsQbP2fu3ydq7I0AAz0Va//F+02FfF/Cc3e/p94tP
5LVGvxSRJqi0bhyscUE+iEhek5YUnWP7qhaei3Q+9tU4rxxz+O0iddwRvH3j
gQbEj9n8K2i7pnuAEjwX6Z/Z+1J+1zvj/ACR/ottd+3cJHfUa4qULRYlup5z
u93CczaftkxqPu3phP5KIm2bMnab8Vkp+q+INMfqYPJfGVWo/2B8mB+UGpdo
Ap6z9f1G69DxP1XIN2Hr1ZPhPS9UOqL+i30vS297hbu5Iv+EvQ/H1ns3FLqi
Hkwkoy8z854ddwHPRerdfp7jvc+O4LlIB1/mf4sr4sFz9nNh+MN+V9T13yIV
X9QfF3HKCDwXSd/i3JvIh1nov8qe99+mqQ3aap6LpHNi9MXTTmqeixQTssPw
40UFeC5S0d61hx9mq3nOxvOd/tMcT7U+F6ncMGDt9n0ceC7Sg5w9E2KmqMBz
tv7ttB9yTqWEPhfpht2PgVYPFNDn7P4zXlz9q0aBejSR4p3rz7zerYDfLpKf
daT1slEy+O0iXRg9tdXQDrbw20X6vt/FqGCN0e3/AcppVbQ=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{0, 1}, {-476.67089843099996`, 4766.708984309999}},
PlotRangeClipping->True,
PlotRangePadding->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.5096799684488688`*^9, 3.509680009765232*^9, 3.509680153710465*^9, {
3.5096802871580977`*^9, 3.509680336609926*^9}, {3.5097534672151337`*^9,
3.509753492305569*^9}, 3.5098287469919395`*^9, 3.5098289451992764`*^9,
3.5098292333997602`*^9, {3.509829426787822*^9, 3.509829453766365*^9},
3.50982953078077*^9, 3.509829569193967*^9, 3.509831637987295*^9,
3.509833499820786*^9, {3.5098336199896593`*^9, 3.5098336323673673`*^9}, {
3.509833728242851*^9, 3.5098337573205137`*^9}, 3.5098385013218555`*^9, {
3.5098386157984033`*^9, 3.509838649399325*^9}, 3.5098398093076677`*^9,
3.509845127185833*^9, 3.5098452104145937`*^9, {3.509845241907395*^9,
3.509845271857108*^9}, {3.5098453258071938`*^9, 3.509845341983119*^9},
3.5098454138352284`*^9, {3.5098454458220577`*^9, 3.509845471068502*^9},
3.509845503819375*^9, 3.509849556823194*^9, 3.5098496096852174`*^9,
3.509849655797855*^9, 3.5098509585193663`*^9, 3.5098512497620244`*^9,
3.50985136437558*^9, 3.5098514907268066`*^9, 3.5098516313048477`*^9,
3.509852024596342*^9, 3.5098522519753475`*^9, 3.5098523313038855`*^9,
3.509852372699253*^9, 3.509852564170204*^9, 3.509852918728484*^9,
3.5101667641200447`*^9, 3.511148726261693*^9, 3.5152064388194685`*^9,
3.5152076371960115`*^9, 3.515207669395853*^9, 3.515207719849739*^9,
3.515208249256019*^9, 3.5152083152467937`*^9, 3.515209972598589*^9,
3.515210782128891*^9, 3.515212928443653*^9, {3.5152130690126934`*^9,
3.5152131092579956`*^9}, 3.515213206387551*^9, 3.5152132452607746`*^9,
3.5152132887942643`*^9, 3.51521706491402*^9, 3.515217097504884*^9,
3.5152171432405*^9, 3.5154829065015755`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Dw", "=",
RowBox[{"2", "*",
RowBox[{"Pi", "/", "10"}]}]}]], "Input"],
Cell[BoxData[
FractionBox["\[Pi]", "5"]], "Output",
CellChangeTimes->{3.5152094171288176`*^9, 3.515210785412079*^9,
3.515212928473655*^9, 3.5152130690386953`*^9, 3.515213206415552*^9,
3.515213245288776*^9, 3.515213288821266*^9, 3.515217097533886*^9,
3.5152171432565007`*^9, 3.5154829065325775`*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"gT", "=",
RowBox[{
RowBox[{"gTf", "[", "nInput", "]"}], "*", "c1"}]}], ";"}]], "Input",
CellChangeTimes->{{3.5098268894196925`*^9, 3.5098269232656283`*^9}, {
3.5098326393245687`*^9, 3.5098326461639595`*^9}, {3.5098328541678567`*^9,
3.5098328570270205`*^9}, {3.5098334030782523`*^9, 3.509833420484248*^9}, {
3.5098335527158113`*^9, 3.509833553794873*^9}, {3.5098337445087814`*^9,
3.50983374553184*^9}, {3.5098384942594514`*^9, 3.509838494550468*^9}, {
3.509838601825604*^9, 3.5098386029166665`*^9}, {3.5152129087505274`*^9,
3.515212922156294*^9}, {3.5152130548458834`*^9, 3.5152130551138983`*^9}, {
3.515213086504694*^9, 3.5152130869527197`*^9}, 3.515213122030726*^9, {
3.5152132355612197`*^9, 3.515213242336607*^9}, {3.515213285094053*^9,
3.515213285489075*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"gTf", "[", "n_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "Ct", "}"}], ",",
RowBox[{
RowBox[{"Ct", "=",
RowBox[{"Import", "[",
RowBox[{
RowBox[{"Inp", "[",
RowBox[{"[",
RowBox[{"n", ",", "1"}], "]"}], "]"}], ",", "\"\<Table\>\""}],
"]"}]}], ";",
RowBox[{
RowBox[{
RowBox[{"2", "/", "k"}], " ", "/", "T"}], "*", ".004", "*",
RowBox[{"(",
RowBox[{"Chop", "[",
RowBox[{
RowBox[{"Fourier", "[",
RowBox[{
RowBox[{"Ct", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], "+",
RowBox[{"Fourier", "[",
RowBox[{
RowBox[{"Ct", "[",
RowBox[{"[",
RowBox[{"All", ",", "2"}], "]"}], "]"}], ",",
RowBox[{"FourierParameters", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",",
RowBox[{"-", "1"}]}], "}"}]}]}], "]"}], " ", "-", " ",
RowBox[{"Ct", "[",
RowBox[{"[",
RowBox[{"1", ",", "2"}], "]"}], "]"}]}], "]"}], ")"}]}]}]}],
"]"}]}]], "Input",
CellChangeTimes->{{3.515212332213551*^9, 3.515212402603577*^9}, {
3.515212432697298*^9, 3.5152124771638412`*^9}, 3.515212570970207*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{