-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_ATD.py
298 lines (218 loc) · 9.32 KB
/
train_ATD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.utils as vutils
import numpy as np
from sklearn.metrics import roc_auc_score
import argparse
import os, copy
from utils import fix_random_seed, get_feature_extractor_model
from data.closed_set import get_in_training_loaders
from data.open_set import get_out_training_loaders
from pgd_attack import attack_pgd
from models.DCGAN import Generator_fea, Discriminator_fea, wrapper_fea, Generator_pix, Discriminator_pix, weights_init
os.environ['TORCH_HOME'] = 'models/'
#get args
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default='fea', type=str, choices={'fea', 'pix'})
parser.add_argument('--training_type', default='adv', type=str, choices={'clean', 'adv'})
parser.add_argument('--in_dataset', default='cifar10', type=str, choices={'cifar10', 'cifar100', 'TI'})
parser.add_argument('--alpha', default=0.5, type=float)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--num_epochs', default=20, type=int)
parser.add_argument('--eps', default=8/255, type=float)
parser.add_argument('--attack_iters', default=10, type=int)
parser.add_argument('--run_name', default='test', type=str)
parser.add_argument('--seed', default=0, type=int)
return parser.parse_args()
args = get_args()
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
model_type = args.model_type
training_type = args.training_type
in_dataset = args.in_dataset
alpha = args.alpha
batch_size = args.batch_size
num_epochs = args.num_epochs
eps= args.eps
attack_iters = args.attack_iters
alp = 2.5*eps/attack_iters
clean_val = alpha<=0.5
run_name = args.run_name
print('Run name:', run_name)
#set random seed
seed = args.seed
fix_random_seed(seed)
#define deture extractor model
model = get_feature_extractor_model(training_type, in_dataset)
#in dataset
trainloader, valloader = get_in_training_loaders(in_dataset, batch_size)
#out dataset
trainloader_out, valloader_out = get_out_training_loaders(batch_size)
#Model DCGAN
# Number of channels in the training images. For color images this is 3
if model_type == 'fea':
nc = 512
elif model_type == 'pix':
nc = 3
# Size of z latent vector (i.e. size of generator input)
nz = 100
# Size of feature maps in generator
ngf = 64
# Size of feature maps in discriminator
ndf = 64
# Beta1 hyperparam for Adam optimizers
beta1 = 0.5
# Number of GPUs available.
ngpu = 1
if model_type == 'fea':
netG = Generator_fea(ngpu=ngpu, nz=nz, ngf=ngf, nc=nc).to(device)
netD = Discriminator_fea(ngpu=ngpu, nc=nc, ndf=ndf).to(device)
forward_pass = wrapper_fea(model, netD)
elif model_type == 'pix':
netG = Generator_pix(ngpu=ngpu, nz=nz, ngf=ngf, nc=nc).to(device)
netD = Discriminator_pix(ngpu=ngpu, nc=nc, ndf=ndf).to(device)
forward_pass = netD
#weights_init
netD.apply(weights_init)
netG.apply(weights_init)
#############################
#train
# Initialize BCELoss function
criterion = nn.BCELoss()
criterion_mse = nn.MSELoss()
# Create batch of latent vectors that we will use to visualize
# the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
# Establish convention for real and fake labels during training
real_label = 1
fake_label = 0
lr = 1e-4
# Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr/1.5, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
save_dir = 'checkpoints/'
if not os.path.isdir(save_dir):
os.mkdir(save_dir)
#Training Loop
# Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
best_auc = 0
print("Starting Training Loop...")
# For each epoch
for epoch in range(num_epochs):
for i, ((x, y), (x_out, y_out)) in enumerate(zip(trainloader, trainloader_out), 0):
# Format batch
x = x.to(device)
x_out = x_out.to(device)
b_size = x.size(0)
# Attack
netD.eval()
delta_x = torch.zeros_like(x)
if training_type == 'adv':
delta_x = attack_pgd(forward_pass, x, torch.ones_like(y, dtype=torch.float32).to(device), epsilon=eps, alpha=alp, attack_iters=attack_iters)
delta_x_out = torch.zeros_like(x_out)
if training_type == 'adv':
delta_x_out = attack_pgd(forward_pass, x_out, torch.zeros_like(y_out, dtype=torch.float32).to(device), epsilon=eps, alpha=alp, attack_iters=attack_iters)
#Update D
netG.eval()
netD.train()
netD.zero_grad()
label_batch_real = torch.full((b_size,), real_label, device=device).to(torch.float32)
noise = torch.randn(b_size, nz, 1, 1, device=device)
fake = netG(noise)
if model_type == 'fea':
feature_real = model(x+delta_x).unsqueeze(2).unsqueeze(3)
feture_out = model(x_out+delta_x_out).unsqueeze(2).unsqueeze(3)
elif model_type == 'pix':
feature_real = x+delta_x
feture_out = x_out+delta_x_out
cat_real_fake_out = torch.cat([feature_real, fake, feture_out], dim=0)
output_real_fake_out = netD(cat_real_fake_out.detach()).view(-1)
output_real, output_fake, output_out = output_real_fake_out[:b_size], output_real_fake_out[b_size:2*b_size], output_real_fake_out[2*b_size:]
D_x = output_real.mean().item()
errD_real = criterion(output_real, label_batch_real)
D_G_z1 = output_fake.mean().item()
label_batch_fake = torch.full((b_size,), fake_label, device=device).to(torch.float32)
errD_fake = criterion(output_fake, label_batch_fake)
errD_fake = (1-alpha)*errD_fake
label_out = torch.full((x_out.size(0),), fake_label, device=device).to(torch.float32)
errD_real_out = criterion(output_out, label_out)
errD_real_out = alpha*errD_real_out
D_x_out = output_out.mean().item()
errD = errD_real + errD_fake + errD_real_out
errD.backward()
optimizerD.step()
#Update G
netG.train()
netD.eval()
netG.zero_grad()
label_batch_fake_real = torch.full((b_size,), real_label, device=device).to(torch.float32)
noise = torch.randn(b_size, nz, 1, 1, device=device)
fake = netG(noise)
output_fake = netD(fake.detach()).view(-1)
D_G_z2 = output_fake.mean().item()
errG = criterion(output_fake, label_batch_fake_real)
errG.backward()
optimizerG.step()
# Output training stats
if i % 50 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(x_out): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(trainloader),
errD.item(), errG.item(), D_x, D_x_out, D_G_z1, D_G_z2))
# Save Losses for plotting later
G_losses.append(errG.item())
D_losses.append(errD.item())
# Check how the generator is doing by saving G's output on fixed_noise
if (iters % 500 == 0) or (epoch == num_epochs-1):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
iters += 1
#validation
netG.eval()
netD.eval()
scores_in = []
scores_out = []
for (x, y) in valloader:
x = x.to(device)
if clean_val:
delta = torch.zeros_like(x)
else:
delta = attack_pgd(forward_pass, x, torch.ones_like(y, dtype=torch.float32).to(device), epsilon=eps, alpha=alp, attack_iters=attack_iters)
output = forward_pass(x+delta).view(-1)
scores_in += output.cpu().detach().tolist()
for (x, y) in valloader_out:
x = x.to(device)
if clean_val:
delta = torch.zeros_like(x)
else:
delta = attack_pgd(forward_pass, x, torch.zeros_like(y, dtype=torch.float32).to(device), epsilon=eps, alpha=alp, attack_iters=attack_iters)
output = forward_pass(x+delta).view(-1)
scores_out += output.cpu().detach().tolist()
if len(scores_out)>=len(scores_in):
break
onehots = np.array([1]*len(scores_out) + [0]*len(scores_in))
scores = np.concatenate([scores_out, scores_in],axis=0)
new_auc = roc_auc_score(onehots, -scores)
print(new_auc)
if new_auc>best_auc:
best_auc = new_auc
print('checkpoint!')
cur_model_wts = copy.deepcopy(netG.state_dict())
path_to_save_paramOnly = os.path.join(save_dir, 'GNet_best_' + run_name)
torch.save(cur_model_wts, path_to_save_paramOnly)
cur_model_wts = copy.deepcopy(netD.state_dict())
path_to_save_paramOnly = os.path.join(save_dir, 'DNet_best_' + run_name)
torch.save(cur_model_wts, path_to_save_paramOnly)
if num_epochs>0:
cur_model_wts = copy.deepcopy(netG.state_dict())
path_to_save_paramOnly = os.path.join(save_dir, 'GNet_last_' + run_name)
torch.save(cur_model_wts, path_to_save_paramOnly)
cur_model_wts = copy.deepcopy(netD.state_dict())
path_to_save_paramOnly = os.path.join(save_dir, 'DNet_last_' + run_name)
torch.save(cur_model_wts, path_to_save_paramOnly)
#############################