forked from SigmaQuan/NTM-Keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm2ntm.py
257 lines (226 loc) · 12.4 KB
/
lstm2ntm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from __future__ import absolute_import
import numpy as np
from keras import backend as K
from keras import activations, initializations, regularizers
from keras.engine import Layer, InputSpec
from keras.layers import Recurrent
from keras.layers import time_distributed_dense
import memory as EM
import head
class NTM(Recurrent):
'''Long-Short Term Memory unit - Hochreiter 1997.
For a step-by-step description of the algorithm, see
[this tutorial](http://deeplearning.net/tutorial/lstm.html).
# Arguments
output_dim: dimension of the internal projections and the final output.
init: weight initialization function.
Can be the name of an existing function (str),
or a Theano function (see: [initializations](../initializations.md)).
inner_init: initialization function of the inner cells.
forget_bias_init: initialization function for the bias of the forget gate.
[Jozefowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)
recommend initializing with ones.
activation: activation function.
Can be the name of an existing function (str),
or a Theano function (see: [activations](../activations.md)).
inner_activation: activation function for the inner cells.
W_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the input weights matrices.
U_regularizer: instance of [WeightRegularizer](../regularizers.md)
(eg. L1 or L2 regularization), applied to the recurrent weights matrices.
b_regularizer: instance of [WeightRegularizer](../regularizers.md),
applied to the bias.
dropout_W: float between 0 and 1. Fraction of the input units to drop for input gates.
dropout_U: float between 0 and 1. Fraction of the input units to drop for recurrent connections.
# References
- [Long short-term memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf) (original 1997 paper)
- [Learning to forget: Continual prediction with LSTM](http://www.mitpressjournals.org/doi/pdf/10.1162/089976600300015015)
- [Supervised sequence labelling with recurrent neural networks](http://www.cs.toronto.edu/~graves/preprint.pdf)
- [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
'''
def __init__(self, output_dim, memory_dim=128, memory_size=20,
controller_output_dim=100, location_shift_range=1,
num_read_head=1, num_write_head=1,
init='glorot_uniform', inner_init='orthogonal',
forget_bias_init='one', activation='tanh',
inner_activation='hard_sigmoid',
W_regularizer=None, U_regularizer=None, R_regularizer=None,
b_regularizer=None, W_y_regularizer=None,
W_xi_regularizer=None, W_r_regularizer=None,
dropout_W=0., dropout_U=0., **kwargs):
self.output_dim = output_dim
self.init = initializations.get(init)
self.inner_init = initializations.get(inner_init)
self.forget_bias_init = initializations.get(forget_bias_init)
self.activation = activations.get(activation)
self.inner_activation = activations.get(inner_activation)
self.W_regularizer = regularizers.get(W_regularizer)
self.U_regularizer = regularizers.get(U_regularizer)
self.b_regularizer = regularizers.get(b_regularizer)
self.dropout_W, self.dropout_U = dropout_W, dropout_U
if self.dropout_W or self.dropout_U:
self.uses_learning_phase = True
super(NTM, self).__init__(**kwargs)
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
self.input_dim = input_shape[2]
if self.stateful:
self.reset_states()
else:
# initial states: 2 all-zero tensors of shape (output_dim)
self.states = [None, None]
if self.consume_less == 'gpu':
self.W = self.init((self.input_dim, 4 * self.output_dim),
name='{}_W'.format(self.name))
self.U = self.inner_init((self.output_dim, 4 * self.output_dim),
name='{}_U'.format(self.name))
self.b = K.variable(np.hstack((np.zeros(self.output_dim),
K.get_value(self.forget_bias_init((self.output_dim,))),
np.zeros(self.output_dim),
np.zeros(self.output_dim))),
name='{}_b'.format(self.name))
self.trainable_weights = [self.W, self.U, self.b]
else:
self.W_i = self.init((self.input_dim, self.output_dim),
name='{}_W_i'.format(self.name))
self.U_i = self.inner_init((self.output_dim, self.output_dim),
name='{}_U_i'.format(self.name))
self.b_i = K.zeros((self.output_dim,), name='{}_b_i'.format(self.name))
self.W_f = self.init((self.input_dim, self.output_dim),
name='{}_W_f'.format(self.name))
self.U_f = self.inner_init((self.output_dim, self.output_dim),
name='{}_U_f'.format(self.name))
self.b_f = self.forget_bias_init((self.output_dim,),
name='{}_b_f'.format(self.name))
self.W_c = self.init((self.input_dim, self.output_dim),
name='{}_W_c'.format(self.name))
self.U_c = self.inner_init((self.output_dim, self.output_dim),
name='{}_U_c'.format(self.name))
self.b_c = K.zeros((self.output_dim,), name='{}_b_c'.format(self.name))
self.W_o = self.init((self.input_dim, self.output_dim),
name='{}_W_o'.format(self.name))
self.U_o = self.inner_init((self.output_dim, self.output_dim),
name='{}_U_o'.format(self.name))
self.b_o = K.zeros((self.output_dim,), name='{}_b_o'.format(self.name))
self.trainable_weights = [self.W_i, self.U_i, self.b_i,
self.W_c, self.U_c, self.b_c,
self.W_f, self.U_f, self.b_f,
self.W_o, self.U_o, self.b_o]
self.W = K.concatenate([self.W_i, self.W_f, self.W_c, self.W_o])
self.U = K.concatenate([self.U_i, self.U_f, self.U_c, self.U_o])
self.b = K.concatenate([self.b_i, self.b_f, self.b_c, self.b_o])
self.regularizers = []
if self.W_regularizer:
self.W_regularizer.set_param(self.W)
self.regularizers.append(self.W_regularizer)
if self.U_regularizer:
self.U_regularizer.set_param(self.U)
self.regularizers.append(self.U_regularizer)
if self.b_regularizer:
self.b_regularizer.set_param(self.b)
self.regularizers.append(self.b_regularizer)
if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights
self.built = True
def reset_states(self):
assert self.stateful, 'Layer must be stateful.'
input_shape = self.input_spec[0].shape
if not input_shape[0]:
raise Exception('If a RNN is stateful, a complete ' +
'input_shape must be provided (including batch size).')
if hasattr(self, 'states'):
K.set_value(self.states[0],
np.zeros((input_shape[0], self.output_dim)))
K.set_value(self.states[1],
np.zeros((input_shape[0], self.output_dim)))
else:
self.states = [K.zeros((input_shape[0], self.output_dim)),
K.zeros((input_shape[0], self.output_dim))]
def preprocess_input(self, x):
if self.consume_less == 'cpu':
if 0 < self.dropout_W < 1:
dropout = self.dropout_W
else:
dropout = 0
input_shape = self.input_spec[0].shape
input_dim = input_shape[2]
timesteps = input_shape[1]
x_i = time_distributed_dense(x, self.W_i, self.b_i, dropout,
input_dim, self.output_dim, timesteps)
x_f = time_distributed_dense(x, self.W_f, self.b_f, dropout,
input_dim, self.output_dim, timesteps)
x_c = time_distributed_dense(x, self.W_c, self.b_c, dropout,
input_dim, self.output_dim, timesteps)
x_o = time_distributed_dense(x, self.W_o, self.b_o, dropout,
input_dim, self.output_dim, timesteps)
return K.concatenate([x_i, x_f, x_c, x_o], axis=2)
else:
return x
def step(self, x, states):
h_tm1 = states[0]
c_tm1 = states[1]
B_U = states[2]
B_W = states[3]
if self.consume_less == 'gpu':
z = K.dot(x * B_W[0], self.W) + K.dot(h_tm1 * B_U[0], self.U) + self.b
z0 = z[:, :self.output_dim]
z1 = z[:, self.output_dim: 2 * self.output_dim]
z2 = z[:, 2 * self.output_dim: 3 * self.output_dim]
z3 = z[:, 3 * self.output_dim:]
i = self.inner_activation(z0)
f = self.inner_activation(z1)
c = f * c_tm1 + i * self.activation(z2)
o = self.inner_activation(z3)
else:
if self.consume_less == 'cpu':
x_i = x[:, :self.output_dim]
x_f = x[:, self.output_dim: 2 * self.output_dim]
x_c = x[:, 2 * self.output_dim: 3 * self.output_dim]
x_o = x[:, 3 * self.output_dim:]
elif self.consume_less == 'mem':
x_i = K.dot(x * B_W[0], self.W_i) + self.b_i
x_f = K.dot(x * B_W[1], self.W_f) + self.b_f
x_c = K.dot(x * B_W[2], self.W_c) + self.b_c
x_o = K.dot(x * B_W[3], self.W_o) + self.b_o
else:
raise Exception('Unknown `consume_less` mode.')
i = self.inner_activation(x_i + K.dot(h_tm1 * B_U[0], self.U_i))
f = self.inner_activation(x_f + K.dot(h_tm1 * B_U[1], self.U_f))
c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1 * B_U[2], self.U_c))
o = self.inner_activation(x_o + K.dot(h_tm1 * B_U[3], self.U_o))
h = o * self.activation(c)
return h, [h, c]
def get_constants(self, x):
constants = []
if 0 < self.dropout_U < 1:
ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, self.output_dim))
B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
constants.append(B_U)
else:
constants.append([K.cast_to_floatx(1.) for _ in range(4)])
if 0 < self.dropout_W < 1:
input_shape = self.input_spec[0].shape
input_dim = input_shape[-1]
ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
ones = K.tile(ones, (1, int(input_dim)))
B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
constants.append(B_W)
else:
constants.append([K.cast_to_floatx(1.) for _ in range(4)])
return constants
def get_config(self):
config = {'output_dim': self.output_dim,
'init': self.init.__name__,
'inner_init': self.inner_init.__name__,
'forget_bias_init': self.forget_bias_init.__name__,
'activation': self.activation.__name__,
'inner_activation': self.inner_activation.__name__,
'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None,
'U_regularizer': self.U_regularizer.get_config() if self.U_regularizer else None,
'b_regularizer': self.b_regularizer.get_config() if self.b_regularizer else None,
'dropout_W': self.dropout_W,
'dropout_U': self.dropout_U}
base_config = super(NTM, self).get_config()
return dict(list(base_config.items()) + list(config.items()))