-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
78 lines (62 loc) · 2.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
'''
EfficientSpeech: An On-Device Text to Speech Model
https://ieeexplore.ieee.org/abstract/document/10094639
Rowel Atienza
Apache 2.0 License
Usage:
python3 train.py
'''
import yaml
import torch
import datetime
from datamodule import LJSpeechDataModule
from lightning import Trainer
from lightning.pytorch.strategies import DDPStrategy
from utils.tools import get_args
from model import EfficientSpeech
def print_args(args):
opt_log = '--------------- Options ---------------\n'
opt = vars(args)
for k, v in opt.items():
opt_log += f'{str(k)}: {str(v)}\n'
opt_log += '---------------------------------------\n'
print(opt_log)
return opt_log
if __name__ == "__main__":
args = get_args()
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader)
args.num_workers *= args.devices
datamodule = LJSpeechDataModule(preprocess_config=preprocess_config,
batch_size=args.batch_size,
num_workers=args.num_workers)
model = EfficientSpeech(preprocess_config=preprocess_config,
lr=args.lr,
weight_decay=args.weight_decay,
max_epochs=args.max_epochs,
depth=args.depth,
n_blocks=args.n_blocks,
block_depth=args.block_depth,
reduction=args.reduction,
head=args.head,
embed_dim=args.embed_dim,
kernel_size=args.kernel_size,
decoder_kernel_size=args.decoder_kernel_size,
expansion=args.expansion,
wav_path=args.out_folder,
hifigan_checkpoint=args.hifigan_checkpoint,
infer_device=args.infer_device,
verbose=args.verbose)
if args.verbose:
print_args(args)
trainer = Trainer(accelerator=args.accelerator,
devices=args.devices,
precision=args.precision,
check_val_every_n_epoch=10,
max_epochs=args.max_epochs,)
if args.compile:
model = torch.compile(model)
start_time = datetime.datetime.now()
trainer.fit(model, datamodule=datamodule)
elapsed_time = datetime.datetime.now() - start_time
print(f"Training time: {elapsed_time}")