-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgpent3.py
240 lines (205 loc) · 6.94 KB
/
gpent3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#!/usr/bin/python
#
# Genetic Programming algorithm for for evolving
# 3-qubit entanglement production quantum circuit
#
# Copyright (C) 2006 Robert Nowotniak <[email protected]>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# based on:
# [Rub00] Ben I. P. Rubinstein. Evolving quantum circuits using genetic programming
#
from random import choice,randint
from qclib import *
from copy import deepcopy as dc
import sys
class Node:
''' Genetic Programming Tree Node '''
def __init__(self, type, target, control):
self.type = type # T, H, I lub CNot
# T -- Pi/8 gates (shifts the phase with the Pi/4 angle)
self.target = target
self.control = control
def __repr__(self):
return '(%s, %s, %s)' % (self.type, self.target, self.control)
def randNode(qubits = 3):
''' Generate random GP Tree Node '''
return Node(
choice(('I', 'H', 'T', 'CNot')),
''.join([choice(['0', '1']) for x in xrange(qubits)]),
''.join([choice(['0', '1']) for x in xrange(qubits)]))
def randGenotype(qubits = 3, length = 4):
''' Generate random genotype (GP Tree) '''
result = []
for i in xrange(length):
result.append(randNode(qubits))
return result
def phenotype(genotype):
''' Transforms genotype into phenotypes (QCircuits) space '''
stages = []
for n in genotype:
qubits = len(n.target)
trgt = int(n.target, 2) % qubits
ctrl = int(n.control, 2) % qubits
if n.type == 'CNot' and ctrl != trgt:
cnot = CNot(ctrl, trgt)
gates = [cnot]
gates += [I] * (qubits - cnot.size)
gates.reverse()
else:
gates = [I] * (qubits - trgt - 1)
if n.type == 'H':
gates.append(h)
elif n.type == 'I':
gates.append(I)
elif n.type == 'CNot':
gates.append(Not())
elif n.type == 'T':
gates.append(T)
else:
raise Exception()
gates += [I] * (qubits - len(gates))
s = Stage(*gates)
stages.append(s)
return QCircuit(*stages)
input = Ket(0, 3) # |000>
expected = s2 * Ket(0, 3) + s2 * Ket(7, 3)
qubits = 3
def fitness(indiv):
output = indiv(input)
return sum(abs(output.matrix - expected.matrix))
poplen = 100
elitism = 5
nstages = 5
Ngen = 100
pc = 0.7
pm = 0.03
nm = 2
# Generate random population
population = []
for i in xrange(poplen):
population.append(randGenotype(qubits = qubits, length = nstages))
f = open('log.txt', 'w')
print population
best = None
best_val = None
for epoch in xrange(Ngen):
print 'epoch ' + str(epoch)
fvalues = []
for i in xrange(poplen):
fvalues.append(fitness(phenotype(population[i])))
# for roulette selection
sects = [-v for v in fvalues]
m = min(sects)
if m < 0:
sects = [s - m + (0.01 * abs(m)) for s in sects]
sects /= sum(sects)
# accumulated probabilities
for i in xrange(1, poplen):
sects[i] = sects[i - 1] + sects[i]
sects[-1] = 1.0
if best == None or min(fvalues) < best_val:
best_val = min(fvalues)
best = population[fvalues.index(best_val)]
f.write('%d %f %f %f %f\n' % (epoch, best_val, min(fvalues), max(fvalues), sum(fvalues) / len(fvalues)))
newpop = []
# elitism
if elitism > 0:
ranking = {}
for i in xrange(poplen):
ranking[i] = fvalues[i]
kvs = ranking.items()
kvs = [(v,k) for (k,v) in kvs]
kvs.sort()
kvs = [(k,v) for (v,k) in kvs]
for e in xrange(elitism):
newpop.append(dc(population[kvs[e][0]]))
while len(newpop) < poplen:
# select genetic operation probabilistically
r = random()
if r <= pm:
op = 'mutation'
elif r <= pm + pc:
op = 'crossover'
else:
op = 'reproduction'
# select two individuals by roulette
r = random()
for j in xrange(len(sects)):
if r <= sects[j]:
indiv1 = j
break
r = random()
for j in xrange(len(sects)):
if r <= sects[j]:
indiv2 = j
break
if op == 'reproduction':
newpop.append(dc(population[indiv1]))
elif op == 'crossover':
par1 = indiv1
par2 = indiv2
# crossover type
crosstype = choice(('gate', 'target', 'control'))
if crosstype == 'gate':
cp = randint(1, nstages - 1)
child1 = dc(population[par1][:cp] + population[par2][cp:])
child2 = dc(population[par2][:cp] + population[par1][cp:])
elif crosstype == 'target':
child1 = dc(population[par1])
child2 = dc(population[par2])
g1 = choice(child1)
g2 = choice(child2)
cp = randint(0, len(g1.target))
# crossover target qubit binary strings
control1 = g1.target[:cp] + g2.target[cp:]
control2 = g2.target[:cp] + g1.target[cp:]
g1.target = control1
g2.target = control2
elif crosstype == 'control':
child1 = dc(population[par1])
child2 = dc(population[par2])
g1 = choice(child1)
g2 = choice(child2)
cp = randint(0, len(g1.control))
# crossover control qubit binary strings
target1 = g1.target[:cp] + g2.target[cp:]
target2 = g2.target[:cp] + g1.target[cp:]
g1.target = target1
g2.target = target2
else:
assert(False)
# add the offspring to new population
newpop.append(child1)
newpop.append(child2)
elif op == 'mutation':
# mutation
child = dc(population[indiv1])
done = []
for i in xrange(nm):
while True:
gi = choice(xrange(len(child)))
if gi not in done:
break
done.append(gi)
child[gi] = randNode(qubits = qubits)
newpop.append(child)
else:
# NOT REACHABLE
assert(False)
population = newpop
print best_val
print best
f.close()