-
-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrun_bench.py
94 lines (73 loc) · 2.88 KB
/
run_bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import glob
import json
import os
import shutil
import subprocess
import matplotlib.pyplot as plt
def run_benchmarks():
# Ensure the `.benchmarks` folder exists
os.makedirs(".benchmarks", exist_ok=True)
# Run pytest benchmarks and save results
print("Running benchmarks...")
result = subprocess.run(
["pytest", "benchmarks/catch_all.py", "--benchmark-save=benchmark_results"],
capture_output=True,
text=True
)
print(result.stdout)
def load_benchmark_results(file_path):
"""Load the benchmark results from the provided JSON file."""
with open(file_path, "r") as f:
return json.load(f)
def plot_relative_performance(results):
"""Plot relative performance for different benchmark groups."""
benchmarks = results["benchmarks"]
# Extract and format data
names = []
ops = []
for bm in benchmarks:
group = bm.get("group", "")
library = "dataclass-wizard" if "wizard" in bm["name"] else "dataclasses-json"
formatted_name = f"{group} ({library})"
names.append(formatted_name)
ops.append(bm["stats"]["ops"])
# Calculate relative performance (ratio of each ops to the slowest ops)
baseline = min(ops)
relative_performance = [op / baseline for op in ops]
# Plot bar chart
plt.figure(figsize=(10, 6))
bars = plt.barh(names, relative_performance, color="skyblue")
plt.xlabel("Performance Relative to Slowest (times faster)")
plt.title("Catch All: Relative Performance of dataclass-wizard vs dataclasses-json")
plt.tight_layout()
# Add data labels to the bars
for bar, rel_perf in zip(bars, relative_performance):
plt.text(bar.get_width() + 0.1, bar.get_y() + bar.get_height() / 2,
f"{rel_perf:.1f}x", va="center")
# Save and display the plot
plt.savefig("catch_all.png")
plt.show()
def find_latest_benchmark_file():
"""Find the most recent benchmark result file."""
benchmark_dir = ".benchmarks"
pattern = os.path.join(benchmark_dir, "**", "*.json")
files = glob.glob(pattern, recursive=True)
if not files:
raise FileNotFoundError("No benchmark files found.")
latest_file = max(files, key=os.path.getctime) # Find the most recently created file
return latest_file
if __name__ == "__main__":
# Step 1: Run benchmarks
run_benchmarks()
# Step 2: Find the latest benchmark results file
benchmark_file = find_latest_benchmark_file()
print(f"Latest benchmark file: {benchmark_file}")
# Step 3: Load the benchmark results
if os.path.exists(benchmark_file):
results = load_benchmark_results(benchmark_file)
# Step 4: Plot results
plot_relative_performance(results)
else:
print(f"Benchmark file not found: {benchmark_file}")
# Step 5: Move the generated image to docs folder for easy access
shutil.copy("catch_all.png", "docs/")