-
Notifications
You must be signed in to change notification settings - Fork 25
/
README.Rmd
60 lines (47 loc) · 1.88 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
output: github_document
---
```{r, echo = FALSE, message = FALSE}
knitr::opts_chunk$set(
fig.align = "center",
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-"
)
```
# valr <img src="man/figures/logo.png" align="right" />
<!-- badges: start -->
[![R-CMD-check](https://github.com/rnabioco/valr/actions/workflows/check-standard.yaml/badge.svg)](https://github.com/rnabioco/valr/actions/workflows/check-standard.yaml)
[![codecov](https://codecov.io/github/rnabioco/valr/graph/badge.svg?token=nvYoQCoEtN)](https://codecov.io/github/rnabioco/valr)
[![](https://www.r-pkg.org/badges/version/valr)](https://CRAN.R-project.org/package=valr)
<!-- badges: end -->
valr provides tools to read and manipulate genome intervals and signals, similar to the [BEDtools](https://bedtools.readthedocs.io/en/latest/) suite.
## Installation
::: .pkgdown-release
```{r, eval = FALSE}
# Install released version from CRAN
install.packages("valr")
```
:::
::: .pkgdown-devel
```{r, eval = FALSE}
# Install development version from GitHub
# install.packages("pak")
pak::pak("rnabioco/valr")
```
:::
## valr Example
Functions in valr have similar names to their BEDtools counterparts, and so will be familiar to users coming from the BEDtools suite. Unlike other tools that wrap BEDtools and write temporary files to disk, valr tools run natively in memory. Similar to [pybedtools](https://daler.github.io/pybedtools/#why-pybedtools), valr has a terse syntax:
```{r syntax_demo, message = FALSE}
library(valr)
library(dplyr)
snps <- read_bed(valr_example("hg19.snps147.chr22.bed.gz"))
genes <- read_bed(valr_example("genes.hg19.chr22.bed.gz"))
# find snps in intergenic regions
intergenic <- bed_subtract(snps, genes)
# find distance from intergenic snps to nearest gene
nearby <- bed_closest(intergenic, genes)
nearby |>
select(starts_with("name"), .overlap, .dist) |>
filter(abs(.dist) < 5000)
```