-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmask_train.py
212 lines (164 loc) · 7.27 KB
/
mask_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import sys
import torch
from torch import nn
from torch import optim
import torchvision
from mask_models import E1, E2, D_A, Disc, D_B
from mask_utils import save_imgs, save_model, load_model, CustomDataset
import argparse
import time
def train(args):
if not os.path.exists(args.out):
os.makedirs(args.out)
if args.gpu > -1:
torch.cuda.set_device(args.gpu)
print("Alpha1 is " + str(args.alpha1))
print("Alpha2 is " + str(args.alpha2))
print("Beta1 is " + str(args.beta1))
print("Beta2 is " + str(args.beta2))
print("Gama is " + str(args.gama))
print("Delta is " + str(args.delta))
print("discweight is " + str(args.discweight))
_iter = 0
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((args.resize, args.resize)),
torchvision.transforms.RandomHorizontalFlip(),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
domA_train = CustomDataset(os.path.join(args.root, 'trainA.txt'), transform=transform)
domB_train = CustomDataset(os.path.join(args.root, 'trainB.txt'), transform=transform)
A_label = torch.full((args.bs,), 1)
B_label = torch.full((args.bs,), 0)
B_separate = torch.full((args.bs, args.sep * (args.resize // 64) * (args.resize // 64)), 0)
e1 = E1(args.sep, args.resize // 64)
e2 = E2(args.sep, args.resize // 64)
d_a = D_A(args.resize // 64)
disc = Disc(args.sep, args.resize // 64)
d_b = D_B(args.resize // 64)
mse = nn.MSELoss()
bce = nn.BCELoss()
l1 = nn.L1Loss()
if torch.cuda.is_available():
e1 = e1.cuda()
e2 = e2.cuda()
d_a = d_a.cuda()
d_b = d_b.cuda()
disc = disc.cuda()
A_label = A_label.cuda()
B_label = B_label.cuda()
B_separate = B_separate.cuda()
mse = mse.cuda()
bce = bce.cuda()
l1 = l1.cuda()
ae_params = list(e1.parameters()) + list(e2.parameters()) + list(d_a.parameters()) + list(d_b.parameters())
ae_optimizer = optim.Adam(ae_params, lr=args.lr, betas=(0.5, 0.999))
disc_params = disc.parameters()
disc_optimizer = optim.Adam(disc_params, lr=args.disclr, betas=(0.5, 0.999))
if args.load != '':
save_file = os.path.join(args.load, 'checkpoint')
_iter = load_model(save_file, e1, e2, d_a, ae_optimizer, disc, disc_optimizer)
e1 = e1.train()
e2 = e2.train()
d_a = d_a.train()
d_b = d_b.train()
disc = disc.train()
print('Started training...')
while True:
domA_loader = torch.utils.data.DataLoader(dataset=domA_train, batch_size=args.bs, shuffle=True)
domB_loader = torch.utils.data.DataLoader(dataset=domB_train, batch_size=args.bs, shuffle=True)
if _iter >= args.iters:
break
for domA_img, domB_img in zip(domA_loader, domB_loader):
if domA_img.size(0) != args.bs or domB_img.size(0) != args.bs:
break
if torch.cuda.is_available():
domA_img = domA_img.cuda()
domB_img = domB_img.cuda()
else:
domA_img = domA_img
domB_img = domB_img
domA_img = domA_img.view((-1, 3, args.resize, args.resize))
domB_img = domB_img.view((-1, 3, args.resize, args.resize))
ae_optimizer.zero_grad()
A_common = e1(domA_img)
A_separate = e2(domA_img)
A_encoding = torch.cat([A_common, A_separate], dim=1)
A_shaved_encoding = torch.cat([A_common, B_separate], dim=1)
B_common = e1(domB_img)
B_encoding = torch.cat([B_common, B_separate], dim=1)
A_decoding, _ = d_b(A_encoding, d_a(A_shaved_encoding))
B_decoding = d_a(B_encoding)
#Reconstruction
loss = args.gama * l1(A_decoding, domA_img) + args.delta * l1(B_decoding, domB_img)
C_encoding = torch.cat([B_common, A_separate], dim=1)
C_decoding, _ = d_b(C_encoding, domB_img)
B_rec, _ = d_b(B_encoding, domB_img)
A_rec, _ = d_b(A_encoding, domA_img)
e1_b = e1(C_decoding)
e2_a = e2(C_decoding)
#Cycle loss
loss += args.beta1 * mse(e1_b, B_common) + args.beta2 * mse(e2_a, A_separate)
#Reconstruction 2
mask_loss = args.alpha1 * l1(A_rec, domA_img) + args.alpha2 * l1(B_rec, domB_img)
loss += mask_loss
if args.discweight > 0:
preds_A = disc(A_common)
preds_B = disc(B_common)
loss += args.discweight * (bce(preds_A, B_label) + bce(preds_B, B_label))
loss.backward()
torch.nn.utils.clip_grad_norm_(ae_params, 5)
ae_optimizer.step()
if args.discweight > 0:
disc_optimizer.zero_grad()
A_common = e1(domA_img)
B_common = e1(domB_img)
disc_A = disc(A_common)
disc_B = disc(B_common)
loss = bce(disc_A, A_label) + bce(disc_B, B_label)
loss.backward()
torch.nn.utils.clip_grad_norm_(disc_params, 5)
disc_optimizer.step()
if _iter % args.progress_iter == 0:
print('Outfile: %s <<>> Iteration %d' % (args.out, _iter))
sys.stdout.flush()
if _iter % args.display_iter == 0 and _iter > 0:
e1 = e1.eval()
e2 = e2.eval()
d_a = d_a.eval()
d_b = d_b.eval()
save_imgs(args, e1, e2, d_a, d_b, _iter)
e1 = e1.train()
e2 = e2.train()
d_a = d_a.train()
d_b = d_b.train()
if _iter % args.save_iter == 0 and _iter > 0:
save_file = os.path.join(args.out, 'checkpoint')
save_model(save_file, e1, e2, d_a, d_b, ae_optimizer, disc, disc_optimizer, _iter)
_iter += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--root', default='')
parser.add_argument('--out', default='out')
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--bs', type=int, default=32)
parser.add_argument('--iters', type=int, default=150000)
parser.add_argument('--resize', type=int, default=128)
parser.add_argument('--sep', type=int, default=25)
parser.add_argument('--discweight', type=float, default=0.005)
parser.add_argument('--disclr', type=float, default=0.0002)
parser.add_argument('--progress_iter', type=int, default=2500)
parser.add_argument('--display_iter', type=int, default=10000)
parser.add_argument('--save_iter', type=int, default=25000)
parser.add_argument('--load', default='')
parser.add_argument('--num_display', type=int, default=6)
parser.add_argument('--alpha1', type=float, default=0.7)
parser.add_argument('--alpha2', type=float, default=0.7)
parser.add_argument('--beta1', type=float, default=0.0)
parser.add_argument('--beta2', type=float, default=0.001)
parser.add_argument('--gama', type=float, default=7.0)
parser.add_argument('--delta', type=float, default=5.0)
parser.add_argument('--gpu', type=int, default=-1)
args = parser.parse_args()
train(args)