-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_places.py
172 lines (140 loc) · 6.89 KB
/
train_places.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import logging
from os.path import join
from datetime import datetime
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.utils.data.dataloader import DataLoader
from torchvision import transforms, datasets
# from model.metrics import gap
import util
import parser
import commons
import dataset
from model import network, metrics
torch.backends.cudnn.benchmark = True # Provides a speedup
# ---- Initial setup: parser, logging... ----
args = parser.parse_arguments('places')
start_time = datetime.now()
args.output_folder = join("runs", args.exp_name, start_time.strftime('%Y-%m-%d_%H-%M-%S'))
commons.setup_logging(args.output_folder)
commons.make_deterministic(args.seed)
logging.info(f"Arguments: {args}")
logging.info(f"The outputs are being saved in {args.output_folder}")
device = args.device
# ---- Dataloaders ----
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_dataset = datasets.Places365(root=args.data_path,
split="train-standard",
transform=transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
]))
valid_dataset = datasets.Places365(root=args.data_path,
split="val",
transform=transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize]))
train_dl = DataLoader(dataset=train_dataset,
batch_size=args.train_batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
valid_dl = DataLoader(dataset=valid_dataset,
batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
num_classes = 365 # Places365 contains 365 classes
args.features_dim = 365 # For places the ArcFaceLoss module is not needed
# ---- Model ----
# instantiate the model, using ImageNet pretrained nets from torchvision
model = network.LandmarkNet(args=args,
num_classes=num_classes, # dynamically obtained from the dataset
)
model = model.to(device)
model = torch.nn.DataParallel(model)
logging.info(f"Number of classes for dataset {args.dataset_name} is {num_classes}")
logging.info(f"Training Samples : {len(train_dl.dataset)}")
logging.info(f"Validation Samples : {len(valid_dl.dataset)}")
# ---- Setup Optimizer and Loss ----
if args.optim == "adam":
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.optim == "sgd":
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=0.001)
criterion = nn.CrossEntropyLoss()
# ---- Resume the model, optimizer, training_parameters ----
if args.resume:
model, optimizer, best_acc, start_epoch_num, not_improved_num = util.resume_train(args, model, optimizer)
logging.info(f"Resuming from epoch {start_epoch_num} with best accuracy {best_acc:.4f}")
else:
not_improved = start_epoch_num = not_improved_num = best_acc = 0
# ---- Training Loop ----
for epoch_num in range(start_epoch_num, args.epochs_num):
# ---- Training Step ----
logging.info(f"Start training epoch: {epoch_num:02d}/{args.epochs_num}")
epoch_start_time = datetime.now()
# ---- Loss & Metric ----
train_loss = metrics.AverageMeter()
train_acc = metrics.AverageMeter()
model.train()
for i, (images, labels) in tqdm(enumerate(train_dl),
total=len(train_dl),
miniters=None, ncols=100):
images, labels = images.to(device), labels.to(device)
batch_size = images.shape[0]
outputs = model(images)
loss = criterion(outputs, labels)
acc = metrics.accuracy(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss.update(loss.item(), batch_size)
train_acc.update(acc, batch_size)
logging.info(f"Training: Finished epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "
f"average epoch loss = {train_loss.avg:.4f}, "
f"average epoch accuracy = {train_acc.avg:.4f}")
# ---- Validation Step ----
logging.info(f"Start validation epoch: {epoch_num:02d}/{args.epochs_num}")
epoch_start_time = datetime.now()
# ---- Loss & Metric ----
valid_loss = metrics.AverageMeter()
valid_acc = metrics.AverageMeter()
model.eval()
with torch.no_grad():
for i, (images, labels) in tqdm(enumerate(valid_dl),
total=len(valid_dl),
miniters=None, ncols=100):
images, labels = images.to(device), labels.to(device)
batch_size = images.shape[0]
outputs = model(images, labels)
loss = criterion(outputs, labels)
acc = metrics.accuracy(outputs, labels)
valid_loss.update(loss.item(), batch_size)
valid_acc.update(acc, batch_size)
logging.info(f"Validation : Finished epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "
f"average epoch loss = {valid_loss.avg:.4f}, "
f"average epoch accuracy = {valid_acc.avg:.4f}")
is_best = valid_acc.avg > best_acc
# Save checkpoint, which contains all training parameters
util.save_checkpoint(args, {"epoch_num": epoch_num, "model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(), "accuracy": valid_acc.avg,
"not_improved_num": not_improved_num}, is_best, filename="last_model.pth")
# If accuracy did not improve for "many" epochs, stop training
if is_best:
logging.info(f"Improved: previous best accuracy = {best_acc:.4f}, current accuracy = {valid_acc.avg:.4f}")
best_acc = valid_acc.avg
not_improved_num = 0
else:
not_improved_num += 1
logging.info(
f"Not improved: {not_improved_num} / {args.patience}: best accuracy = {best_acc:.4f}, current accuracy = {valid_acc.avg:.4f}")
if not_improved_num >= args.patience:
logging.info(f"Performance did not improve for {not_improved_num} epochs. Stop training.")
break
logging.info(f"Best acc: {best_acc:.4f}")
logging.info(f"Trained for {epoch_num:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")