-
Notifications
You must be signed in to change notification settings - Fork 25
/
ui.R
119 lines (86 loc) · 5.57 KB
/
ui.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#Richard Shanahan
#https://github.com/rjshanahan
#20 January 2017
###### TIME SERIES FORECASTING WITH SHINY ######
# load required packages
library(zoo)
library(xts)
library(ggplot2)
library(reshape2)
library(dplyr)
library(devtools)
library(forecast)
library(plotly)
library(dygraphs)
#set theme for ggplot2 graphics
theme = theme_set(theme_minimal())
theme = theme_update(legend.position="top",
axis.text.x = element_text(angle = 45, hjust = 1, vjust =1.25))
# Choices for drop-downs
myWeekends <- c("yes","no")
myDummy <- c("yes","no")
csvDummy <- 'https://raw.githubusercontent.com/rjshanahan/Time-Series-Forecasting-with-Shiny/master/demo_csv/TIME_SERIES_DUMMY.csv'
############################################################
## shiny user interface function
############################################################
shinyUI(
navbarPage(
title="Time Series Forecasting",
theme="bootstrap.css",
inverse=TRUE,
##### FORECASTING TAB #####
tabPanel("Time Series Forecasting", icon = icon("line-chart"),
fluidPage(
titlePanel('Time Series Forecasting', windowTitle='Workload Forecast'),
fluidRow(
sidebarPanel(
fileInput("i_file", "Upload your CSV file",
accept = c(
"text/csv",
"text/comma-separated-values,text/plain",
".csv")
),
h5("Try it out - download a dummy ", a("CSV with three daily time series", href=csvDummy, target="_blank")),
h5('You can find many ', a("more time series here", href='https://datamarket.com/data/list/?q=interval:day%20provider:tsdl', target="_blank")),
tags$hr(),
selectInput(inputId="i_task_select", "Select Series",'',''),
sliderInput(inputId="i_forecast_n","Forecast periods",value=30,min=2,max=120,step=1),
radioButtons(inputId="i_weekends", "Include weekends", myWeekends, selected = myWeekends[2], inline = T),
radioButtons(inputId="i_dummy", "Adjust forecast for Events", myDummy, selected = myDummy[2], inline = T),
actionButton(inputId="goButton", "Start forecasting!"),
br(),
br(),
downloadButton('downloader', 'Download forecasts'),
width=3),
column(width=9,
tabsetPanel(type="tabs",
#build forecasting panels
tabPanel("LOBF", icon = icon("bar-chart"), h4("Line of Best Fit (Linear Regression)"), br(), dygraphOutput("p_LOBF"), value=1),
tabPanel("MF", icon = icon("bar-chart"), h4("Mean Forecast - Average of Entire Series"), br(), dygraphOutput("p_MF"), value=2),
tabPanel("MA", icon = icon("line-chart"), h4("Moving Average Smoothing Model"), br(), dygraphOutput("p_MA"), value=3),
tabPanel("SES", icon = icon("line-chart"), h4("Simple Exponential Smoothing Model"), br(), dygraphOutput("p_SES"), value=4),
tabPanel("HW", icon = icon("line-chart"), h4("Holt-Winters Exponential Smoothing Model"), br(), dygraphOutput("p_HW"), value=5),
tabPanel("FTARIMA", icon = icon("area-chart"), h4("Auto Regressive Integrated Moving Average (ARIMA) Model with Fourier Transform"), br(), dygraphOutput("p_FTARIMA"), value=6),
tabPanel("TBATS", icon = icon("area-chart"), h4("TBATS Model: Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend & Seasonal components"), br(), dygraphOutput("p_TBATS"), value=7),
tabPanel("COMBINE", icon = icon("sliders"), h4("Hybrid Model with Weighted Forecasts based on Performance (ARIMA, Exponential, TBATS, Neural Network, STL)"), br(), dygraphOutput("p_COMBINE"), value=8),
tabPanel("COMPARE", icon = icon("puzzle-piece"), h4("Compare Forecast Model Performance Metrics"), h6("Read more about ", a("forecasting accuracy here", href="https://en.wikipedia.org/wiki/Forecasting#Forecasting_accuracy", target="_blank")), br(), DT::dataTableOutput("t_COMPARE"), value=9, id="COMP_TAB"),
id = "timeSeriesTabs"
)
)),
fluidRow(
column(width=6,
h4("Forecast Values with Upper and Lower 95% Confidence Intervals"),
DT::dataTableOutput("time_series_table")),
column(width=6,
h4("Performance Metrics"),
DT::dataTableOutput("performance_metrics"))
),
tags$div(id="cite",
'Want to know more?',
a("visit my GitHub repository", href="https://github.com/rjshanahan/Time-Series-Forecasting-with-Shiny", target="_blank")
)
)
)
)
)