-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_base_module.py
202 lines (168 loc) · 8.6 KB
/
llm_base_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from transformers import DataCollatorForLanguageModeling
from exception.exceptions import TuningModuleFunctionException
from arguments.arguments import TuneArguments, MergeArguments, PushArguments
from utils.debugging_utils import debugging_wrapper
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, AutoPeftModelForCausalLM, PeftModel
from trl import SFTTrainer, SFTConfig
from transformers.trainer_utils import get_last_checkpoint
from utils.model_utils import get_all_layers, get_all_linear_layers, prepare_model_vocabulary
from utils.dataset_utils import load_dataset
import os
import shutil
# LLM independent base functions
def fine_tune_eval_base(arguments: TuneArguments, tokenizer, base_model) -> None:
with debugging_wrapper(arguments.is_debug_mode):
if arguments.do_train:
print(f"Starting fine-tuning of base model {arguments.base_model} for {arguments.new_model}")
print('')
else:
print(f"Starting evaluation of {arguments.new_model}")
print('')
output_dir = f"{arguments.output_directory}{os.sep}checkpoints{os.sep}{arguments.new_model}"
lora_dir = f"{arguments.output_directory}{os.sep}adapters{os.sep}{arguments.new_model}"
if arguments.do_train and not arguments.no_checkpoint:
print(f'Checkpointing to {output_dir}')
print('')
if arguments.do_train and os.path.exists(lora_dir) and not arguments.overwrite_output:
raise TuningModuleFunctionException(f'cannot overwrite existing LoRA directory({lora_dir}) when `--overwrite-output` CLI argument is not set to "true"', 'FINE_TUNE')
if arguments.do_train:
base_model, tokenizer = prepare_model_vocabulary(arguments, base_model, tokenizer)
ds = load_dataset(arguments)
if arguments.target_modules is None or len(arguments.target_modules) == 0:
target_modules = get_all_layers(base_model) if arguments.target_all_modules else get_all_linear_layers(base_model)
else:
target_modules = arguments.target_modules
modules_to_save=["embed_tokens"] if arguments.do_train and arguments.save_embeddings else []
lora_config = LoraConfig(
r=arguments.r,
lora_alpha=arguments.alpha,
target_modules=target_modules,
modules_to_save=modules_to_save,
lora_dropout=arguments.lora_dropout,
bias=arguments.bias,
task_type=TaskType.CAUSAL_LM
)
model = prepare_model_for_kbit_training(base_model)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
learning_rate = arguments.batch_size * arguments.base_learning_rate
if arguments.train_masked_language_model:
tokenizer._mask_token = arguments.mask_token
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=arguments.mlm_probability)
train_params = SFTConfig(
output_dir=output_dir,
load_best_model_at_end=arguments.load_best_before_save,
do_train=arguments.do_train,
include_tokens_per_second=arguments.show_token_metrics,
include_num_input_tokens_seen=arguments.show_token_metrics,
num_train_epochs=arguments.epochs,
torch_empty_cache_steps=arguments.torch_empty_cache_steps,
per_device_train_batch_size=arguments.batch_size,
per_device_eval_batch_size=arguments.batch_size,
gradient_accumulation_steps=arguments.gradient_accumulation_steps,
overwrite_output_dir=arguments.overwrite_output,
optim=arguments.optimizer_type,
save_strategy=arguments.save_strategy,
save_steps=arguments.save_steps,
eval_steps=arguments.eval_steps,
logging_strategy=arguments.save_strategy,
logging_steps=arguments.save_steps,
save_total_limit=arguments.max_checkpoints,
learning_rate=learning_rate,
weight_decay=arguments.weight_decay,
use_cpu=arguments.cpu_only_tuning,
fp16=arguments.is_fp16,
tf32=arguments.is_tf32,
bf16=arguments.is_bf16,
max_grad_norm=arguments.max_gradient_norm,
max_steps=-1,
warmup_ratio=arguments.warmup_ratio,
group_by_length=arguments.group_by_length,
lr_scheduler_type=arguments.lr_scheduler_type,
report_to="tensorboard",
do_eval=arguments.do_eval,
eval_strategy=arguments.eval_strategy if arguments.do_eval else 'no',
eval_on_start=arguments.do_eval,
max_seq_length=arguments.max_seq_length,
neftune_noise_alpha=arguments.neftune_noise_alpha if arguments.is_instruct_model else None,
dataset_text_field="text" if not arguments.train_file.endswith("jsonl") else None,
use_ipex=arguments.cpu_only_tuning
)
train = SFTTrainer(
tokenizer=tokenizer,
model=model,
train_dataset=ds['train'] if arguments.do_train else ds['eval'],
args=train_params,
eval_dataset=ds['eval'] if arguments.do_eval else None,
data_collator=data_collator if arguments.train_masked_language_model else None
)
model.config.use_cache = False
if arguments.do_train:
if os.path.exists(output_dir) and not arguments.no_checkpoint:
print()
print('Loading checkpoint')
model.gradient_checkpointing_enable()
last_checkpoint = get_last_checkpoint(output_dir)
print()
print('Executing fine-tune job')
print()
train.train(resume_from_checkpoint=last_checkpoint)
else:
print()
print('Executing fine-tune job')
print()
train.train()
print('')
print(f'Saving LoRA adapter to {lora_dir}')
if os.path.exists(lora_dir) and arguments.overwrite_output:
shutil.rmtree(lora_dir)
train.model.save_pretrained(lora_dir)
train.model.config.save_pretrained(lora_dir)
tokenizer.save_pretrained(lora_dir)
else:
print()
print('Executing evaluation job')
print()
metrics = train.evaluate()
print()
print(f'Evaluation Results: {str(metrics)}')
print()
del model
del base_model
del tokenizer
def merge_base(arguments: MergeArguments, tokenizer, base_model, bnb_config) -> None:
with debugging_wrapper(arguments.is_debug_mode):
if arguments.train_masked_language_model:
tokenizer._mask_token = arguments.mask_token
lora_dir = f"{arguments.output_dir}{os.sep}adapters{os.sep}{arguments.new_model}"
model_dir = f'{arguments.output_dir}{os.sep}merged-models{os.sep}{arguments.new_model}'
print(f"merging {arguments.base_model} with LoRA into {arguments.new_model}")
if not os.path.exists(lora_dir):
raise TuningModuleFunctionException(f'cannot merge model because LoRA adapter @ {lora_dir} is missing', 'MERGE')
if os.path.exists(model_dir) and not arguments.overwrite_output:
raise TuningModuleFunctionException(f'cannot overwrite existing model directory({model_dir}) when `--overwrite-output` CLI argument is not set to "true"', 'MERGE')
prepare_model_vocabulary(arguments, base_model, tokenizer)
if arguments.use_agent_tokens or arguments.additional_vocabulary_tokens is not None:
model = AutoPeftModelForCausalLM.from_pretrained(lora_dir)
else:
model = PeftModel.from_pretrained(base_model, lora_dir, quantization_config=bnb_config)
model = model.merge_and_unload(progressbar=True)
print('')
print(f'Saving model to {model_dir}')
print('')
if os.path.exists(model_dir) and arguments.overwrite_output:
shutil.rmtree(model_dir)
model.save_pretrained(model_dir)
tokenizer.save_pretrained(model_dir)
del model
del base_model
del tokenizer
def push_base(arguments: PushArguments, tokenizer, model) -> None:
with debugging_wrapper(arguments.is_debug_mode):
print(f"pushing {arguments.new_model} to HF")
print('')
is_private = not arguments.public_push
model.push_to_hub(arguments.new_model, private=is_private)
tokenizer.push_to_hub(arguments.new_model, private=is_private)
del model
del tokenizer