forked from keon/algorithms
-
Notifications
You must be signed in to change notification settings - Fork 2
/
subsets.py
94 lines (75 loc) · 2.5 KB
/
subsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
"""
Given a set of distinct integers, nums,
return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
"""
def subnets(nums):
nums.sort()
total = 2 ** len(nums) # or 1 << len(nums)
res = [] * total
for i in range(total):
res.append([])
for i in range(len(nums)):
for j in range(total):
if ((j >> i) & 1) > 0: # i & 1 << j
res[j].append(nums[i])
return res
def subsets2(self, nums):
res = []
nums.sort()
for i in range(1 << len(nums)):
tmp = []
for j in range(len(nums)):
if i & 1 << j: # if i >> j & 1:
tmp.append(nums[j])
res.append(tmp)
return res
"""
this explanation is from leet_nik @ leetcode
This is an amazing solution. Learnt a lot.
Number of subsets for {1 , 2 , 3 } = 2^3 .
why ?
case possible outcomes for the set of subsets
1 -> Take or dont take = 2
2 -> Take or dont take = 2
3 -> Take or dont take = 2
therefore,
total = 2*2*2 = 2^3 = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
Lets assign bits to each outcome ->
First bit to 1 , Second bit to 2 and third bit to 3
Take = 1
Dont take = 0
0) 0 0 0 -> Dont take 3 , Dont take 2 , Dont take 1 = { }
1) 0 0 1 -> Dont take 3 , Dont take 2 , take 1 = { 1 }
2) 0 1 0 -> Dont take 3 , take 2 , Dont take 1 = { 2 }
3) 0 1 1 -> Dont take 3 , take 2 , take 1 = { 1 , 2 }
4) 1 0 0 -> take 3 , Dont take 2 , Dont take 1 = { 3 }
5) 1 0 1 -> take 3 , Dont take 2 , take 1 = { 1 , 3 }
6) 1 1 0 -> take 3 , take 2 , Dont take 1 = { 2 , 3 }
7) 1 1 1 -> take 3 , take 2 , take 1 = { 1 , 2 , 3 }
In the above logic ,Insert S[i] only if (j>>i)&1 ==true
{ j E { 0,1,2,3,4,5,6,7 } i = ith element in the input array }
element 1 is inserted only into those places where 1st bit of j is 1
if( j >> 0 &1 ) ==> for above above eg.
this is true for sl.no.( j )= 1 , 3 , 5 , 7
element 2 is inserted only into those places where 2nd bit of j is 1
if( j >> 1 &1 ) == for above above eg.
this is true for sl.no.( j ) = 2 , 3 , 6 , 7
element 3 is inserted only into those places where 3rd bit of j is 1
if( j >> 2 & 1 ) == for above above eg.
this is true for sl.no.( j ) = 4 , 5 , 6 , 7
Time complexity : O(n*2^n) , for every input element loop traverses
the whole solution set length i.e. 2^n
"""