b RISC-\V/C

RISC-V Cryptography Extensions
Volume III

Extra Vector Instructions

Version v0.0.3, 1 February 2024:

Table of Contents

Colophon
Acknowledgments
1. Introduction
2. Extensions Overview
2.1. Zvbc32e - Vector Carryless Multiplication
2.2. Ivkgs - Vector-Scalar GCM/GMAC
3. Instructions
3.1. vclmul.[vv,vx]
3.2. vclmulh.[vv,vx]
3.3. vghsh.vs
3.4. vgmul.vs
4. Bibliography
5. Encodings

Appendix A: Crypto Vector Cryptographic Instructions

coO O O U1 B b W N

[Yy
o o U1 W O

Colophon

This document describes the Vector Cryptography Extra extensions to the RISC-V Instruction Set
Architecture.

This document is Discussion Document. Assume everything can change. This document is not
complete yet and was created only for the purpose of conversation outside of the document. For
more information, see here.

Copyright and licensure:

o This work is licensed under a Creative Commons Attribution 4.0 International
License

Document Version Information:
o HEAD @ 4ae2021a989ddc90fda47fd4db721c3d850ea322

See github.com/riscv/riscv-crypto/doc/vector-extra for more information.

http://riscv.org/spec-state
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/riscv/riscv-crypto/doc/vector-extra

Acknowledgments

Contributors to this specification (in alphabetical order) include:
Ken Dockser, Markku-Juhani O. Saarinen, Nicolas Brunie, Richard Newell

We are all very grateful to the many other people who have helped to improve this specification
through their comments, reviews, feedback and questions.

Chapter 1. Introduction

This document describes the proposed vector extra cryptography extensions for RISC-V. Those
extensions extend the vector cryptography extensions for RISC-V, providing extra features not
mandatory for a high performace implementation but which can help further improve the
efficiency of the algorithms that use them. All instructions proposed here are based on the Vector

registers.

Chapter 2. Extensions Overview

The section introduces all of the extensions in the Vector Cryptography Extra Instruction Set
Extension Specification.

All the Vector Crypto Extra Extensions can be built on any embedded (Zve*) or application ("V")
base Vector Extension.

All cryptography-specific instructions defined in this Vector Crypto specification (i.e., those in Zvkgs,
but not Zvbc32e) shall be executed with data-independent execution latency as defined in the RISC-
V Scalar Cryptography Extensions specification. It is important to note that the Vector Crypto
instructions are independent of the implementation of the Zkt extension and do not require that Zkt
is implemented.

Detection of individual cryptography extensions uses the unified software-based RISC-V discovery
method.

0 At the time of writing, these discovery mechanisms are still a work in progress.

2.1. Zvbc32e - Vector Carryless Multiplication

General purpose carryless multiplication instructions which are commonly used in cryptography
and hashing (e.g., Elliptic curve cryptography, GHASH, CRC).

These instructions are only defined for SEW=32. Zvbc32e can be supported when ELEN >=32.

Note

The extension Zvbc32e is independent from Zvbc which defines the same instructions for SEW=64.
When ELEN>=64 both extensions can be combined to have velmul.v[vx] and vclmulh.v[vx] defined
for both SEW=32 and SEW=64.

Mnemonic Instruction
velmul.[vv,vx] Vector Carry-less Multiply

velmulh. [vv,vx] [insns-vclmulh-32e]

https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.1-scalar

2.2. Zvkgs - Vector-Scalar GCM/GMAC

Zvkgs depends on Zvkg, it extends the existing vghsh.vv and vgmul.vv instructions with new vector-
scalar variants: vghsh.vs and vgmul.vs.

Instructions to enable the efficient implementation of parallel versions of GHASHy which is used in
Galois/Counter Mode (GCM) and Galois Message Authentication Code (GMAC).

The instructions inherit the same constraints as the ones mandated for Zvkg instructions: (element
group size, data independent execution timing and v1/vstart multiple constraints).

All of these instructions work on 128-bit element groups comprised of four 32-bit elements, in
element group parlance EGS=4, EGW=128 and the instructions are only defined for SEW=32.

To help avoid side-channel timing attacks, these instructions shall always be implemented with
data-independent timing.

The number of element groups to be processed is v1/EGS. vl must be set to the number of SEW=32
elements to be processed and therefore must be a multiple of EGS=4.
Likewise, vstart must be a multiple of EGS=4.

SEW EGW Mnemonic Instruction
32 128 vghsh.vs Vector-Scalar GHASH Add-Multiply
32 128 vgmul.vs Vector GHASH Multiply

Chapter 3. Instructions

3.1. velmul.[vv,vx]

Synopsis

Vector Carry-less Multiply by vector or scalar - returning low half of product.

Mnemonic

vclmul.vv vd, vs2, vsl, vin
vclmul.vx vd, vs2, rs1, vim

Encoding (Vector-Vector)

31 26 25 24 20 19 15 14 12 11 0
001100 vm vs2 vsl OPMVV vd OP-V
Encoding (Vector-Scalar)
31 26 25 24 20 19 15 14 12 11 0
001100 vm vs2 rsl OPMVX vd OP-v
Reserved Encodings
» SEWis any value other than 32 (Zvbc32e only)
» SEWis any value other than 64 (Zvbc only)
» SEWis any value other than 32 or 64 (Zvbc and Zvbc32e)
Arguments
Register Direction Definition
vsl/rs1 input multiplier
vs2 input multiplicand
vd output lower part of carry-less multiply
o velmul instruction was initially defined in Zvbe with only SEW=64-bit support, this
page describes how the specification is extended in Zvbc32e to support SEW=32 bits.

Description

Produces the low half of 2*SEW-bit carry-less product.

Each SEW-bit element in the vs2 vector register is carry-less multiplied by either each SEW-bit
element in vs1 (vector-vector), or the SEW-bit value from integer register rs1 (vector-scalar). The
result is the least significant SEW bits of the carry-less product.

The 32-bit carryless multiply instructions can be used for implementing GCM in
o the absence of the zvkg extension. In particular for implementation with ELEN=32

where Zvkg cannot be implemented. It can also be used to speed-up CRC
evaluation.

Operation

function clause execute (VCLMUL(vs2, vs1, vd, suffix)) = {

foreach (i from vstart to vl-1) {
let op1 : bits (SEW) = if suffix =="vv" then get_velem(vs1, i)
else zext or_truncate_to_sew(X(vs1));
let op2 : bits (SEW) = get_velem(vs2, i);
let product : bits (SEW) = cIlmul(op1, op2, SEW);
set_velem(vd, i, product);

}
RETIRE_SUCCESS

}

function clmul(x, y, width) = {
let result : bits(width) = zeros();
foreach (i from @ to (width - 1)) {
if y[i] == 1 then result = result A (x << i);
}

result

}

Included in
Zvbc32e

3.2. vclmulh.[vv,vx]

Synopsis

Vector Carry-less Multiply by vector or scalar - returning high half of product.

Mnemonic

vclmulh.vv vd, vs2, vsl, vin
vclmulh.vx vd, vs2, rs1, vim

Encoding (Vector-Vector)

31 26 25 24 20 19 15 14 12 11 0
001101 vm vs2 vsl OPMVV vd OP-v
Encoding (Vector-Scalar)
31 26 25 24 20 19 15 14 12 11 0
001101 vm vs2 rsl OPMVX vd OoP-v
Reserved Encodings
» SEWis any value other than 64 (Zvbc only)
 SEWis any value other than 32 (Zvbc32e only)
» SEWis any value other than 32 or 64 (Zvbc32e and Zvbc)
Arguments
Register Direction Definition
vs1/rsT input multiplier
vs2 input multiplicand
vd output upper part of carry-less multiply
o velmulh instruction was initially defined in Zvbe, this page describes how the
specification is extended in Zvbc32e to support SEW=32 bits.

Description

Produces the high half of 2*SEW-bit carry-less product.

Each SEW-bit element in the vs2 vector register is carry-less multiplied by either each SEW-bit
element in vs1 (vector-vector), or the SEW-bit value from integer register rs1 (vector-scalar). The
result is the most significant SEW bits of the carry-less product.

Operation

function clause execute (VCLMULH(vs2, vs1, vd, suffix)) = {

foreach (i from vstart to vl-1) {

let op1 : bits (SEW) = if suffix =="vv" then get_velem(vs1,i)
else zext or_truncate _to_sew(X(vs1));
let op2 : bits (SEW) = get_velem(vs2, i);
let product : bits (SEW) = cIlmulh(op1, op2, SEW);
set_velem(vd, i, product);
}
RETIRE_SUCCESS

}

function clmulh(x, y, width) = {
let result : bits(width) = 0;
foreach (i from 1 to (width - 1)) {
if y[i] == 1 then result = result A (x >> (width - i));
}

result

}

Included in
Zvbc32e

3.3. vghsh.vs

Synopsis
Vector-Scalar Add-Multiply over GHASH Galois-Field

Mnemonic

vghsh.vs vd, vs2, vsl

Encoding (Vector-Scalar)

31 26 25 24 20 19 15 14 12 11 7 6 0
101100 1 vs2 vsl OPMVV vd OP-P

Reserved Encodings

 SEWis any value other than 32

Arguments

Register Direction EGW EGS SEW Definition

vd input 128 4 32 Partial hash (Y))
Vs1 input 128 4 32 Cipher text (X))
Vs2 input 128 4 32 Hash Subkey (H)
vd output 128 4 32 Partial-hash (Y..,)
Description

A single "iteration" of the GHASHy algorithm is performed.

The previous partial hashes are read as 4-element groups from 'vd', the cipher texts are read as 4-
element groups from vs1 and the hash subkeys are read from the scalar element group in vs2. The
resulting partial hashes are writen as 4-element groups into vd.

This instruction treats all of the input and output element groups as 128-bit polynomials and
performs operations over GF[2]. It produces the next partial hash (Y.,) by adding the current
128

partial hash (Y;) to the cipher text block (X;) and then multiplying (over GF(2" ")) this sum by the
Hash Subkey (H).

The multiplication over GF(2'*®) is a carryless multiply of two 128-bit polynomials modulo GHASH’s
irreducible polynomial (x'** + x" + x* + x + 1).

The operation can be compactly defined as Y;,, = ((Y; A X)) - H)

The NIST specification (see [zvkg]) orders the coefficients from left to right x,x;X,...X;,; for a
polynomial X, + X;u +X, u* + ... + X;,;u'>. This can be viewed as a collection of byte elements in
memory with the byte containing the lowest coefficients (i.e., 0,1,2,3,4,5,6,7) residing at the lowest
memory address. Since the bits in the bytes are reversed, This instruction internally performs bit
swaps within bytes to put the bits in the standard ordering (e.g., 7,6,5,4,3,2,1,0).

This instruction must always be implemented such that its execution latency does not depend on

10

the data being operated upon.

We are bit-reversing the bytes of inputs and outputs so that the intermediate

o values are consistent with the NIST specification. These reversals are inexpensive
to implement as they unconditionally swap bit positions and therefore do not
require any logic.

Operation

function clause execute (VGHSHVS(vs2, vs1, vd)) = {
// operands are input with bits reversed in each byte
if(LMUL*VLEN < EGW) then {
handle_illegal(); // illegal instruction exception
RETIRE_FAIL
} else {

eg_len = (v1/EGS)
eg_start = (vstart/EGS)

// H is component to all element groups
let helem = 0;
let H = brev8(get_velem(vs2, EGW=128, helem)); // Hash subkey

foreach (i from eg_start to eg_len-1) {
let Y = get_velem(vd,EGW=128,i); // current partial-hash
let X = get_velem(vs1,EGW=128,i); // block cipher output

let Z : bits(128) = 0;

let S = brev8(Y M X);
for (int bit = @; bit < 128; bit++) {
if bit_to_bool(S[bit])
I M=H

bool reduce = bit_to_bool(H[127]);
H=H<<1; // left shift H by 1
if (reduce)
H A= 0x87; // Reduce using xA7 + x"2 + x " + 1 polynomial

}

let result = brev8(Z); // bit reverse bytes to get back to GCM standard ordering
set_velem(vd, EGW=128, i, result);
}
RETIRE_SUCCESS
}
}

Included in

Zvkgs

12

3.4. vgmul.vs

Synopsis
Vector-Scalar Multiply over GHASH Galois-Field

Mnemonic

vgmul.vs vd, vs2

Encoding (Vector-Scalar)

31 26 25 24 20 19 15 14 12 11 7 6 0
101001 1 vs2 10001 OPMVV vd OP-P

Reserved Encodings

 SEWis any value other than 32

Arguments

Register Direction EGW EGS SEW Definition

vd input 128 4 32 Multiplier
Vs2 input 128 4 32 Multiplicand
vd output 128 4 32 Product
Description

A GHASHy; multiply is performed.

The multipliers are read as 4-element groups from 'vd', the multiplicands subkeys are read from the
scalar element group in vs2. The resulting products are written as 4-element groups into vd.

This instruction treats all of the inputs and outputs as 128-bit polynomials and performs operations
over GF[2]. It produces the product over GF(2'**) of the two 128-bit inputs.

The multiplication over GF(2'*®) is a carryless multiply of two 128-bit polynomials modulo GHASH’s
irreducible polynomial (x'** + x" + x* + x + 1).

The NIST specification (see [zvkg]) orders the coefficients from left to right X X;X,...X;,; for a
polynomial X, + X;u +X, u’ + ... + X;,;u'”’. This can be viewed as a collection of byte elements in
memory with the byte containing the lowest coefficients (i.e., 0,1,2,3,4,5,6,7) residing at the lowest
memory address. Since the bits in the bytes are reversed, This instruction internally performs bit
swaps within bytes to put the bits in the standard ordering (e.g., 7,6,5,4,3,2,1,0).

This instruction must always be implemented such that its execution latency does not depend on
the data being operated upon.

We are bit-reversing the bytes of inputs and outputs so that the intermediate

o values are consistent with the NIST specification. These reversals are inexpensive
to implement as they unconditionally swap bit positions and therefore do not
require any logic.

13

Similarly to how the instruction vgmul.vv is identical to vghsh.vv with the value of
vs1 register being 0, the instruction vgmul.vs is identical to vghsh.vs with the value

o of vs1 being 0. This instruction is often used in GHASH code. In some cases it is
followed by an XOR to perform a multiply-add. Implementations may choose to
fuse these two instructions to improve performance on GHASH code that doesn’t
use the add-multiply form of the vghsh.vv instruction.

Operation

function clause execute (VGMUL(vs2, vs1, vd, suffix)) = {
// operands are input with bits reversed in each byte
if(LMUL*VLEN < EGW) then {
handle_illegal(); // illegal instruction exception
RETIRE FAIL
} else {

eg_len = (v1/EGS)

eg_start = (vstart/EGS)

// H multiplicand is constant for all loop iterations

let helem = 0;

let H = brev8(get_velem(vs2,EGW=128, helem)); // Multiplicand

foreach (i from eg_start to eg_len-1) {
let Y = brev8(get_velem(vd,EGW=128,1)); // Multiplier
let Z : bits(128) = 0;

for (int bit = 0; bit < 128; bit++) {
if bit_to_bool(Y[bit])
I "N=H

bool reduce = bit_to_bool(H[127]);
H=H<<1; // left shift H by 1
if (reduce)
H A= 0x87; // Reduce using xA7 + x"2 + x " + 1 polynomial

let result = brev8(Z);
set_velem(vd, EGW=128, i, result);

}
RETIRE_SUCCESS

}
}

Included in

Zvkgs

14

Chapter 4. Bibliography

15

Chapter 5. Encodings

Appendix A: Crypto Vector Cryptographic Instructions

OP-P (0x77) Crypto Vector instructions, including Zvkgs, except Zvbb and Zvbc The new/modified
encoding are in bold and underlined.

Integer Integer FP

funct3 funct3 funct3
OPIVV \Y OPMVV \% OPFVV A%
OPIVX X OPMVX X OPFVF F
OPIVI I

funct6 funct6 funct6
100000 100000 \% vsm3me 100000
100001 100001 \% vsm4k.vi 100001
100010 100010 \% vaesfkl.vi 100010
100011 100011 A% vghsh.vs 100011
100100 100100 100100
100101 100101 100101
100110 100110 100110
100111 100111 100111
101000 101000 A% VAES.vv 101000
101001 101001 A% VAES.vs 101001
101010 101010 \% vaesfk2.vi 101010
101011 101011 \% vsm3c.vi 101011
101100 101100 A% vghsh 101100
101101 101101 A% vsha2ms 101101
101110 101110 \% vsha2ch 101110
101111 101111 \% vsha2cl 101111

16

Table 1. VAES.vv and VAES.vs encoding space

vsl

00000
00001
00010
00011
00111
10000
10001

vaesdm
vaesdf
vaesem
vaesef
vaesz
vsm4r

vgmul

17

	RISC-V Cryptography Extensions Volume III: Extra Vector Instructions
	Table of Contents
	Colophon
	Acknowledgments
	Chapter 1. Introduction
	Chapter 2. Extensions Overview
	2.1. Zvbc32e - Vector Carryless Multiplication
	2.2. Zvkgs - Vector-Scalar GCM/GMAC

	Chapter 3. Instructions
	3.1. vclmul.[vv,vx]
	3.2. vclmulh.[vv,vx]
	3.3. vghsh.vs
	3.4. vgmul.vs

	Chapter 4. Bibliography
	Chapter 5. Encodings
	Appendix A: Crypto Vector Cryptographic Instructions

