forked from aalokpatwa/rasp-mibi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
calculate_coexpression.py
36 lines (30 loc) · 1.21 KB
/
calculate_coexpression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
from lifelines import KaplanMeierFitter
from lifelines.statistics import logrank_test
import seaborn
from itertools import combinations
from itertools import product
binary_infopath = "intermediate_data/protein_positivity/"
biomarker_frames = pd.read_csv("rawdata/proteins_by_frame.csv")
biom_columns = biomarker_frames["Biomarker"].values
for patient in os.listdir(binary_infopath):
print (patient)
com = np.zeros((44,44))
infodf = pd.read_csv(binary_infopath + patient)
n_cells = len(infodf.index)
for cell in range(n_cells):
this_cell = infodf.iloc[[cell]]
pos_columns = []
for column in this_cell.columns[3:]:
if this_cell[column].values[0] == 1:
pos_columns.append(int(column))
combs = combinations(pos_columns, 2)
for combination in combs:
com[combination[0], combination[1]] += 1
com[combination[1], combination[0]] += 1
com_df = pd.DataFrame(com, columns=biom_columns)
com_df.set_index(pd.Index(biom_columns), inplace=True)
com_df.to_csv("intermediate_data/created_coexpression_matrices/" + patient)