forked from Beomi/ko-lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoriginal_llama-2-klue-etc.sh
executable file
·65 lines (57 loc) · 1.67 KB
/
original_llama-2-klue-etc.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
export TOKENIZERS_PARALLELISM=false
python main.py \
--model gpt2 \
--model_args pretrained=meta-llama/Llama-2-7b-hf \
--tasks kobest_hellaswag,kobest_copa,kobest_boolq,kobest_sentineg \
--num_fewshot 0 \
--device cuda:2 \
--output_path results/0b_0_shot.json
python main.py \
--model gpt2 \
--model_args pretrained=meta-llama/Llama-2-7b-hf \
--tasks kobest_hellaswag,kobest_copa,kobest_boolq,kobest_sentineg \
--num_fewshot 5 \
--device cuda:2 \
--output_path results/0b_5_shot.json
python main.py \
--model gpt2 \
--model_args pretrained=meta-llama/Llama-2-7b-hf \
--tasks kobest_hellaswag,kobest_copa,kobest_boolq,kobest_sentineg \
--num_fewshot 10 \
--device cuda:2 \
--output_path results/0b_10_shot.json
python main.py \
--model gpt2 \
--model_args pretrained=meta-llama/Llama-2-7b-hf \
--tasks kobest_hellaswag,kobest_copa,kobest_boolq,kobest_sentineg \
--num_fewshot 50 \
--device cuda:2 \
--output_path results/0b_50_shot.json
# python main.py \
# --model gpt2 \
# --model_args pretrained=meta-llama/Llama-2-7b-hf \
# --tasks nsmc \
# --num_fewshot 0 \
# --device cuda:0 \
# --output_path results/0b_nsmc_0_shot.json
# python main.py \
# --model gpt2 \
# --model_args pretrained=meta-llama/Llama-2-7b-hf \
# --tasks nsmc \
# --num_fewshot 5 \
# --device cuda:0 \
# --output_path results/0b_nsmc_5_shot.json
# python main.py \
# --model gpt2 \
# --model_args pretrained=meta-llama/Llama-2-7b-hf \
# --tasks nsmc \
# --num_fewshot 10 \
# --device cuda:0 \
# --output_path results/0b_nsmc_10_shot.json
# python main.py \
# --model gpt2 \
# --model_args pretrained=meta-llama/Llama-2-7b-hf \
# --tasks nsmc \
# --num_fewshot 50 \
# --device cuda:0 \
# --output_path results/0b_nsmc_50_shot.json