- Windows Portable Demo
- Installation Video Tutorials
- Operating Systems
- Community-Based Work
- Requirements and Dependencies
- Clone OpenPose
- Update OpenPose
- Installation
- Reinstallation
- Uninstallation
- Deploying OpenPose (Exporting OpenPose to Other Projects)
- Optional Settings
- Maximum Speed
- COCO and MPI Models
- Python API
- CPU Version
- OpenCL Version
- Mac OSX Version
- 3D Reconstruction Module
- Calibration Module
- Unity Compatible Version
- Compiling without cuDNN
- Custom Caffe
- Custom NVIDIA NVCaffe
- Custom OpenCV
- Doxygen Documentation Autogeneration (Ubuntu Only)
- CMake Command Line Configuration (Ubuntu Only)
If you just want to use the OpenPose demo in Windows, simply use the latest version of the OpenPose portable binaries which you can download in the Releases section. Read the Instructions.txt
inside the downloaded files to learn to download the models required by OpenPose (about 500 Mb).
The installation documentation in the following sections is only intended if you plan to modify the OpenPose code or integrate it with another library or project. You can stop reading this document if you just wanted to run OpenPose on Windows.
User-created tutorial videos:
- OpenPose + Visual Studio 2017 + CUDA 10.0 + cuDNN 7.5 (no portable demo): https://youtu.be/QC9GTb6Wsb4. For questions, post in GitHub issue #1426.
We welcome users to send us their installation videos (e.g., sharing them as GitHub issue or doing a pull request) and we will post them here.
- Ubuntu 14, 16, 18.
- Windows 7, 8, 10.
- Mac OSX Mavericks and above.
- Nvidia Jetson TX1 (for JetPack 3.1), installation instructions in doc/installation_jetson_tx1.md.
- Nvidia Jetson TX2 (for JetPack 3.1 or 3.3), installation instructions in doc/installation_jetson_tx2_jetpack3.1.md and doc/installation_jetson_tx2_jetpack3.3.md respectively.
- OpenPose has also been used on Windows 7, CentOS, and Nvidia Jetson (TK1 and TX1) embedded systems. However, we do not officially support them at the moment.
We add links to some community-based work based on OpenPose. Note: We do not support them, and we will remove GitHub issues opened asking about them as well as block those users from posting again. If you face any issue, comment only in the comment IDs especified below and/or on their respective GitHubs.
-
ROS examples:
- ROS example 1. For questions and more details, read and post ONLY on issue thread #891.
- ROS example 2 (based on a very old OpenPose version). For questions and more details, read and post ONLY on issue thread #51.
-
Docker Images. For questions and more details, read and post ONLY on issue thread #347.
- Dockerfile working also with CUDA 10:
- Option 1:
-
- (if necessary) Install the latest version of docker (There are extra steps, but if you're on Ubuntu, the main one is
sudo apt-get install docker-ce
. Other steps can be found here )
- (if necessary) Install the latest version of docker (There are extra steps, but if you're on Ubuntu, the main one is
-
docker pull exsidius/openpose
-
- Link 2, it claims to also include Python support. Read and post ONLY on issue thread #1102.
- Link 3.
- Link 4.
- Option 1:
- Dockerfile working only with CUDA 8:
- Dockerfile working also with CUDA 10:
-
Google Colab helper script: Script to install OpenPose on Google Colab. Really useful when access to a computer powerful enough to run OpenPose is not possible, so one possible way to use OpenPose is to build it on a GPU-enabled Colab runtime and then run the programs there. For questions and more details, read and post ONLY on issue thread #949.
- Requirements for the default configuration (you might need more resources with a greater
--net_resolution
and/orscale_number
or less resources by reducing the net resolution and/or using the MPI and MPI_4 models):- CUDA (Nvidia GPU) version:
- NVIDIA graphics card with at least 1.6 GB available (the
nvidia-smi
command checks the available GPU memory in Ubuntu). - At least 2.5 GB of free RAM memory for BODY_25 model or 2 GB for COCO model (assuming cuDNN installed).
- Highly recommended: cuDNN.
- NVIDIA graphics card with at least 1.6 GB available (the
- OpenCL (AMD GPU) version:
- Vega series graphics card
- At least 2 GB of free RAM memory.
- CPU-only (no GPU) version:
- Around 8GB of free RAM memory.
- Highly recommended: a CPU with at least 8 cores.
- CUDA (Nvidia GPU) version:
- Dependencies:
- OpenCV (all 2.X and 3.X versions are compatible).
- Caffe and all its dependencies. Interesting in porting OpenPose to other DL frameworks (Tensorflow, Caffe2, Pytorch, ...)?. Email us ([email protected]) if you are interesting in joining the OpenPose team to do so or feel free to make a pull request if you implement any of those!
- The demo and tutorials additionally use GFlags.
The first step is to clone the OpenPose repository.
- Windows: You might use GitHub Desktop.
- Ubuntu/Mac:
git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose
OpenPose can be easily updated by:
- Download the latest changes:
- Windows: Clicking the
synchronization
button at the top-right part in GitHub Desktop in Windows. - Ubuntu: running
git pull origin master
.
- Windows: Clicking the
- Perform the Reinstallation section described below.
The instructions in this section describe the steps to build OpenPose using CMake (GUI). There are 3 main steps:
Any problem installing OpenPose? Check doc/faq.md and/or post a GitHub issue. We will not respond more GitHub issues about Caffe, OpenCV or CUDA errors.
Make sure to download and install the prerequisites for your particular operating system following doc/prerequisites.md.
- Open CMake GUI and select the OpenPose directory as project source directory, and a non-existing or empty sub-directory (e.g.,
build
) where the Makefile files (Ubuntu) or Visual Studio solution (Windows) will be generated. Ifbuild
does not exist, it will ask you whether to create it. PressYes
.
- Press the
Configure
button, keep the generator inUnix Makefile
(Ubuntu) or set it to your 64-bit Visual Studio version (Windows), and pressFinish
. Note for Windows users: CMake-GUI has changed their design after version 14. For versions older than 14, you usually selectVisual Studio XX 20XX Win64
as the generator (X
depends on your VS version), while theOptional toolset to use
must be empty. However, new CMake versions require you to select only the VS version as the generator, e.g.,Visual Studio 15 2017
, and then you must manually choosex64
for theOptional platform for generator
. See the following images as example.
- If this step is successful, the
Configuring done
text will appear in the bottom box in the last line. Otherwise, some red text will appear in that same bottom box.
- Press the
Generate
button and proceed to OpenPose Building. You can now close CMake.
Note: If you prefer to use your own custom Caffe or OpenCV versions, see Custom Caffe or Custom OpenCV respectively.
Build the project by running the following commands.
cd build/
make -j`nproc`
Build the project by running the following commands (note that Mac provides both logicalcpu
and physicalcpu
, but we want the logical number for maximum speed).
cd build/
make -j`sysctl -n hw.logicalcpu`
In order to build the project, select and run only one of the 2 following alternatives.
-
CMake-GUI alternative (recommended): Open the Visual Studio solution (Windows), called
build/OpenPose.sln
. Then, set the configuration fromDebug
toRelease
and press the green triangle icon (alternatively press F5). -
Command-line build alternative (not recommended). NOTE: The command line alternative is not officially supported, but it was added in GitHub issue #1198. For any questions or bug report about this command-line version, comment in that GitHub issue.
- Run "MSVS 2017 Developer Command Console"
openpose\mkdir build cd build cmake .. -G "Visual Studio 15 2017 Win64" -T v140 cmake --build . --config Release copy x64\Release\* bin\
- If you want to clean build
cmake --clean-first . cmake --build . --config Release copy x64\Release\* bin\
VERY IMPORTANT NOTE: In order to use OpenPose outside Visual Studio, and assuming you have not unchecked the BUILD_BIN_FOLDER
flag in CMake, copy all DLLs from {build_directory}/bin
into the folder where the generated openpose.dll
and *.exe
demos are, e.g., {build_directory}x64/Release
for the 64-bit release version.
Check OpenPose was properly installed by running it on the default images, video, or webcam: doc/quick_start.md#quick-start.
In order to re-install OpenPose:
- (Ubuntu and Mac) If you ran
sudo make install
, then runsudo make uninstall
inbuild/
. - Delete the
build/
folder. - In CMake GUI, click on
File
-->Delete Cache
. - Follow the Installation steps again.
In order to uninstall OpenPose:
- (Ubuntu and Mac) If you ran
sudo make install
, then runsudo make uninstall
inbuild/
. - Remove the OpenPose folder.
See doc/deployment.md.
Check the OpenPose Benchmark as well as some hints to speed up and/or reduce the memory requirements for OpenPose on doc/speed_up_openpose.md.
By default, the body COCO and MPI models are not downloaded. You can download them by turning on the DOWNLOAD_BODY_COCO_MODEL
or DOWNLOAD_BODY_MPI_MODEL
flags. It's slightly faster but less accurate and has less keypoints than the COCO body model.
Note: Check the differences between these models in doc/faq.md#difference-between-body_25-vs.-coco-vs.-mpi.
To install the Python API, ensure that the BUILD_PYTHON
flag is turned on while running CMake GUI and follow the standard installation steps. After the installation, check doc/modules/python_module.md for further details.
To manually select the CPU Version, open CMake GUI mentioned above, and set the GPU_MODE
flag to CPU_ONLY
. NOTE: Accuracy of the CPU version is ~1% higher than CUDA version, so the results will vary.
- On Ubuntu, OpenPose will link against the Intel MKL version (Math Kernel Library) of Caffe. Alternatively, the user can choose his own Caffe version, by unselecting
USE_MKL
and selecting his own Caffe path. - On Windows, it will use the default version of Caffe or one provided by the user on the CPU.
The default CPU version takes ~0.2 images per second on Ubuntu (~50x slower than GPU) while the MKL version provides a roughly 2x speedup at ~0.4 images per second. As of now OpenPose does not support MKL on Windows but will at a later date. Also, MKL version does not support unfixed resolution. So a folder of images of different resolutions requires a fixed net resolution (e.g., --net_resolution 656x368
).
The user can configure the environmental variables MKL_NUM_THREADS
and OMP_NUM_THREADS
. They are set at an optimum parameter level by default (i.e., to the number of threads of the machine). However, they can be tweak by running the following commands into the terminal window, right before running any OpenPose application. Eg:
# Optimal number = Number of threads (used by default)
export MKL_NUM_THREADS="8"
export OMP_NUM_THREADS="8"
Do note that increasing the number of threads results in more memory use. You can check the doc/speed_up_openpose.md for more information about speed and memory requirements in several CPUs and GPUs.
If you have an AMD graphics card, you can compile OpenPose with the OpenCL option. To manually select the OpenCL Version, open CMake GUI mentioned above, and set the GPU_MODE
flag to OPENCL
. Very important: If you compiled previously the CPU-only or CUDA versions on that same OpenPose folder, you will have to manually delete the build
directory and run the installation steps from scratch. Otherwise, many weird errors will appear.
The OpenCL version has been tested on Ubuntu, Windows and OSX. This has been tested only on AMD Vega series and NVIDIA 10 series graphics cards. Please email us if you have issues with other operating systems or graphics cards. Running on OSX on a Mac with an AMD graphics card requires special instructions which can be seen in the section below.
Lastly, OpenCL version does not support unfixed --net_resolution
. So a folder of images of different resolutions with OpenPose, requires the --net_resolution 656x368
flag for example. This should be fixed by the Caffe author in a future patch.
Mac OSX Version compiles similarly to the Ubuntu version. Take a look at the prerequisites section. For GPU acceleration, OpenPose may be built with OpenCL support (check OpenCL Version or add in CMakeGPU_MODE=OPENCL
). If you have a Mac with an inbuilt AMD graphics card, you have to manually select your AMD GPU. To do that, first note which device your Graphics card is set under:
clinfo
Most likely, your AMD device will be under device 2. Then run openpose with the following options to use youe AMD card for acceleration.
build/examples/openpose/openpose.bin --num_gpu 1 --num_gpu_start 2
If you only have an integrated Intel Graphics card, then it will most probably be the device 1:
build/examples/openpose/openpose.bin --num_gpu 1 --num_gpu_start 1
Also as a side note, if the default installation fails (i.e., the one explained above), install Caffe separately and set BUILD_CAFFE
to false in the CMake config. Steps:
- Re-create the build folder:
rm -rf build; mkdir build; cd build
. brew uninstall caffe
to remove the version of Caffe previously installed via cmake.brew install caffe
to install Caffe separately.- Run
cmake-gui
and make the following adjustments to the cmake config:BUILD_CAFFE
set to false.Caffe_INCLUDE_DIRS
set to/usr/local/include/caffe
.Caffe_LIBS
set to/usr/local/lib/libcaffe.dylib
.- Run
Configure
andGenerate
from CMake GUI.
In addition, if you face an OpenCV error during compiling time similar to fatal error: 'opencv2/highgui/highgui.hpp' file not found
, please apply the following patch (this error has been reported in the latest OSX 10.14):
cd 3rdparty/caffe; git apply ../../scripts/osx/mac_opencl_patch.txt
You can include the 3D reconstruction module by:
- Install the FLIR camera software, Spinnaker SDK. It is a propietary software, so we cannot provide direct download link. Note: You might skip this step if you intend to use the 3-D OpenPose module with a different camera brand.
- Ubuntu: Get and install the latest Spinnaker SKD version in their default path. OpenPose will automatically find it. Otherwise, set the right path with CMake.
- Windows: Donwload the latest Spinnaker SKD version from https://www.ptgrey.com/support/downloads.
- Copy
{PointGreyParentDirectory}\Point Grey Research\Spinnaker\bin64\vs2015\
as{OpenPoseDirectory}\3rdparty\windows\spinnaker\bin\
. You can remove all the *.exe files. - Copy
{PointGreyParentDirectory}\Point Grey Research\Spinnaker\include\
as{OpenPoseDirectory}\3rdparty\windows\spinnaker\include\
. - Copy
Spinnaker_v140.lib
andSpinnakerd_v140.lib
from{PointGreyParentDirectory}\Point Grey Research\Spinnaker\lib64\vs2015\
into{OpenPoseDirectory}\3rdparty\windows\spinnaker\lib\
. - (Optional) Spinnaker SDK overview: https://www.ptgrey.com/spinnaker-sdk.
- Copy
- Install the 3D visualizer, FreeGLUT:
- Ubuntu: run
sudo apt-get update && sudo apt-get install build-essential freeglut3 freeglut3-dev libxmu-dev libxi-dev
and reboot your PC. - Windows:
- It is automatically downloaded by the CMake installer.
- Alternatively, if you prefer to download it yourself, you could either:
- Double click on
3rdparty\windows\getFreeglut.bat
. - Download this version from our server and unzip it in
{OpenPoseDirectory}\3rdparty\windows\freeglut\
. - Download the latest
MSVC Package
from http://www.transmissionzero.co.uk/software/freeglut-devel/.- Copy
{freeglutParentDirectory}\freeglut\bin\x64\
as{OpenPoseDirectory}\3rdparty\windows\freeglut\bin\
. - Copy
{freeglutParentDirectory}\freeglut\include\
as{OpenPoseDirectory}\3rdparty\windows\freeglut\include\
. - Copy
{freeglutParentDirectory}\freeglut\lib\x64\
as{OpenPoseDirectory}\3rdparty\windows\freeglut\lib\
.
- Copy
- Double click on
- Ubuntu: run
- Follow the CMake installation steps. In addition, set the
WITH_FLIR_CAMERA
(only if Spinnaker was installed) andWITH_3D_RENDERER
options. - Increased accuracy with Ceres solver (Ubuntu only): For extra 3-D reconstruction accuracy, run
sudo apt-get install libeigen3-dev
, install Ceres solver, and enableWITH_CERES
in CMake when installing OpenPose. Ceres is harder to install in Windows, so we have not tested it so far in there. Feel free to make a pull request if you do.
After installation, check the doc/modules/3d_reconstruction_module.md instructions.
The calibration module is included by default, but you must also enable WITH_EIGEN
if you intend to use the extrinsic camera parameter estimation tool. You can set that flag to 2 different values: BUILD
or FIND
, check Requirements and Dependencies for more information.
After installation, check the doc/modules/calibration_module.md instructions.
Check Unity Plugin.
However, the OpenPose Unity version will crash if if faces an error while it is not used inside Unity. Thus, do not use it without Unity. Although this version would work as long as no errors occur.
The cuDNN library is not mandatory, but required for full keypoint detection accuracy. In case your graphics card is not compatible with cuDNN, you can disable it by unchecking USE_CUDNN
in CMake.
Then, you would have to reduce the --net_resolution
flag to fit the model into the GPU memory. You can try values like 640x320
, 320x240
, 320x160
, or 160x80
to see your GPU memory capabilities. After finding the maximum approximate resolution that your GPU can handle without throwing an out-of-memory error, adjust the net_resolution
ratio to your image or video to be processed (see the --net_resolution
explanation from doc/demo_overview.md), or use -1
(e.g., --net_resolution -1x320
).
OpenPose uses a custom fork of Caffe (rather than the official Caffe master). Our custom fork is only updated if it works on our machines, but we try to keep it updated with the latest Caffe version. This version works on a newly formatted machine (Ubuntu 16.04 LTS) and in all our machines (CUDA 8 and 10 tested). The default GPU version is the master branch, which it is also compatible with CUDA 10 without changes (official Caffe version might require some changes for it). We also use the OpenCL and CPU tags if their CMake flags are selected. We only modified some Caffe compilation flags and minor details.
Alternatively, you can use your own Caffe distribution on Ubuntu/Mac by 1) disabling BUILD_CAFFE
, 2) setting Caffe_INCLUDE_DIRS
to {CAFFE_PATH}/include/caffe
, and 3) setting Caffe_LIBS
to {CAFFE_PATH}/build/lib/libcaffe.so
, as shown in the image below. Note that cuDNN-compatible Caffe version is required in order to get the maximum possible accuracy in OpenPose.
For Windows, simply replace the OpenCV DLLs and include folder for your custom one.
This functionality was added by the community, and we do not officially support it. New pull requests with additional functionality or fixing any bug are welcome!
It has been tested with the official Nvidia Docker image nvcr.io/nvidia/caffe:18.12-py2.
For questions and issues, please only post on the related Pull Request #1169. New GitHub issues about this topic (i.e., outside PR #1169) will be automatically closed with no answer.
Windows support has not been added. Replace set_property(CACHE DL_FRAMEWORK PROPERTY STRINGS CAFFE)
by set_property(CACHE DL_FRAMEWORK PROPERTY STRINGS CAFFE NV_CAFFE)
in CMakeLists.txt
if you intend to use it for Windows, and feel free to do a pull request of it working!
To use a NVIDIA's NVCaffe docker image instead of the standard Caffe, set the following CMake flags:
- Set the
DL_FRAMEWORK
variable toNV_CAFFE
. - Set the
BUILD_CAFFE
variable toOFF
. - Set the correct
Caffe_INCLUDE_DIRS
andCaffe_LIBS
paths following Custom Caffe.
In addition, peter-uhrig.de/openpose-with-nvcaffe-in-a-singularity-container-with-support-for-multiple-architectures/ contains a detailed step-by-step guide to install a portable container with NVCaffe and support for multiple NVidia cards as well as CPU.
If you have built OpenCV from source and OpenPose cannot find it automatically, you can set the OPENCV_DIR
variable to the directory where you build OpenCV (Ubuntu and Mac). For Windows, simply replace the OpenCV DLLs and include folder for your custom one.
You can generate the documentation by setting the BUILD_DOCS
flag. The documentation will be generated in doc/doxygen/html/index.html
. You can simply open it with double-click (your default browser should automatically display it).
Note that this step is unnecessary if you already used the CMake GUI alternative.
Create a build
folder in the root OpenPose folder, where you will build the library --
cd openpose
mkdir build
cd build
The next step is to generate the Makefiles. Now there can be multiple scenarios based on what the user already has e.x. Caffe might be already installed and the user might be interested in building OpenPose against that version of Caffe instead of requiring OpenPose to build Caffe from scratch.
In the build directory, run the below command --
cmake ..
In this example, we assume that Caffe and OpenCV are already present. The user needs to supply the paths of the libraries and the include directories to CMake. For OpenCV, specify the include directories and the libraries directory using OpenCV_INCLUDE_DIRS
and OpenCV_LIBS_DIR
variables respectively. Alternatively, the user can also specify the path to the OpenCVConfig.cmake
file by setting the OpenCV_CONFIG_FILE
variable. For Caffe, specify the include directory and library using the Caffe_INCLUDE_DIRS
and Caffe_LIBS
variables. This will be where you installed Caffe. Below is an example of the same.
cmake -DOpenCV_INCLUDE_DIRS=/home/"${USER}"/softwares/opencv/build/install/include \
-DOpenCV_LIBS_DIR=/home/"${USER}"/softwares/opencv/build/install/lib \
-DCaffe_INCLUDE_DIRS=/home/"${USER}"/softwares/caffe/build/install/include \
-DCaffe_LIBS=/home/"${USER}"/softwares/caffe/build/install/lib/libcaffe.so -DBUILD_CAFFE=OFF ..
cmake -DOpenCV_CONFIG_FILE=/home/"${USER}"/softwares/opencv/build/install/share/OpenCV/OpenCVConfig.cmake \
-DCaffe_INCLUDE_DIRS=/home/"${USER}"/softwares/caffe/build/install/include \
-DCaffe_LIBS=/home/"${USER}"/softwares/caffe/build/install/lib/libcaffe.so -DBUILD_CAFFE=OFF ..
If Caffe is not already present but OpenCV is, then use the below command.
cmake -DOpenCV_INCLUDE_DIRS=/home/"${USER}"/softwares/opencv/build/install/include \
-DOpenCV_LIBS_DIR=/home/"${USER}"/softwares/opencv/build/install/lib ..
cmake -DOpenCV_CONFIG_FILE=/home/"${USER}"/softwares/opencv/build/install/share/OpenCV/OpenCVConfig.cmake ..
You can check the CMake online documentation to check all the options that CMake provides and its analogs to the CMake-gui ones that we show on this document.