-
Notifications
You must be signed in to change notification settings - Fork 33
/
utils.cpp
901 lines (731 loc) · 20 KB
/
utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
// File: utils.cpp
#include "utils.h"
#include "lodepng.h"
#include "miniz.h"
namespace utils
{
#define FLOOD_PUSH(y, xl, xr, dy) if (((y + (dy)) >= 0) && ((y + (dy)) < (int)m_height)) { stack.push_back(fill_segment(y, xl, xr, dy)); }
// See http://www.realtimerendering.com/resources/GraphicsGems/gems/SeedFill.c
uint32_t image_u8::flood_fill(int x, int y, const color_quad_u8& c, const color_quad_u8& b, std::vector<pixel_coord>* pSet_pixels)
{
uint32_t total_set = 0;
if (!flood_fill_is_inside(x, y, b))
return 0;
std::vector<fill_segment> stack;
stack.reserve(64);
FLOOD_PUSH(y, x, x, 1);
FLOOD_PUSH(y + 1, x, x, -1);
while (stack.size())
{
fill_segment s = stack.back();
stack.pop_back();
int x1 = s.m_xl, x2 = s.m_xr, dy = s.m_dy;
y = s.m_y + s.m_dy;
for (x = x1; (x >= 0) && flood_fill_is_inside(x, y, b); x--)
{
(*this)(x, y) = c;
total_set++;
if (pSet_pixels)
pSet_pixels->push_back(pixel_coord(x, y));
}
int l;
if (x >= x1)
goto skip;
l = x + 1;
if (l < x1)
FLOOD_PUSH(y, l, x1 - 1, -dy);
x = x1 + 1;
do
{
for (; x <= ((int)m_width - 1) && flood_fill_is_inside(x, y, b); x++)
{
(*this)(x, y) = c;
total_set++;
if (pSet_pixels)
pSet_pixels->push_back(pixel_coord(x, y));
}
FLOOD_PUSH(y, l, x - 1, dy);
if (x > (x2 + 1))
FLOOD_PUSH(y, x2 + 1, x - 1, -dy);
skip:
for (x++; x <= x2 && !flood_fill_is_inside(x, y, b); x++)
;
l = x;
} while (x <= x2);
}
return total_set;
}
void image_u8::draw_line(int xs, int ys, int xe, int ye, const color_quad_u8& color)
{
if (xs > xe)
{
std::swap(xs, xe);
std::swap(ys, ye);
}
int dx = xe - xs, dy = ye - ys;
if (!dx)
{
if (ys > ye)
std::swap(ys, ye);
for (int i = ys; i <= ye; i++)
set_pixel_clipped(xs, i, color);
}
else if (!dy)
{
for (int i = xs; i < xe; i++)
set_pixel_clipped(i, ys, color);
}
else if (dy > 0)
{
if (dy <= dx)
{
int e = 2 * dy - dx, e_no_inc = 2 * dy, e_inc = 2 * (dy - dx);
rasterize_line(xs, ys, xe, ye, 0, 1, e, e_inc, e_no_inc, color);
}
else
{
int e = 2 * dx - dy, e_no_inc = 2 * dx, e_inc = 2 * (dx - dy);
rasterize_line(xs, ys, xe, ye, 1, 1, e, e_inc, e_no_inc, color);
}
}
else
{
dy = -dy;
if (dy <= dx)
{
int e = 2 * dy - dx, e_no_inc = 2 * dy, e_inc = 2 * (dy - dx);
rasterize_line(xs, ys, xe, ye, 0, -1, e, e_inc, e_no_inc, color);
}
else
{
int e = 2 * dx - dy, e_no_inc = (2 * dx), e_inc = 2 * (dx - dy);
rasterize_line(xe, ye, xs, ys, 1, -1, e, e_inc, e_no_inc, color);
}
}
}
void image_u8::rasterize_line(int xs, int ys, int xe, int ye, int pred, int inc_dec, int e, int e_inc, int e_no_inc, const color_quad_u8& color)
{
int start, end, var;
if (pred)
{
start = ys;
end = ye;
var = xs;
for (int i = start; i <= end; i++)
{
set_pixel_clipped(var, i, color);
if (e < 0)
e += e_no_inc;
else
{
var += inc_dec;
e += e_inc;
}
}
}
else
{
start = xs;
end = xe;
var = ys;
for (int i = start; i <= end; i++)
{
set_pixel_clipped(i, var, color);
if (e < 0)
e += e_no_inc;
else
{
var += inc_dec;
e += e_inc;
}
}
}
}
bool load_png(const char* pFilename, image_u8& img)
{
img.clear();
std::vector<unsigned char> pixels;
unsigned int w = 0, h = 0;
unsigned int e = lodepng::decode(pixels, w, h, pFilename);
if (e != 0)
{
fprintf(stderr, "Failed loading PNG file %s\n", pFilename);
return false;
}
img.init(w, h);
memcpy(&img.get_pixels()[0], &pixels[0], w * h * sizeof(uint32_t));
return true;
}
bool save_png(const char* pFilename, const image_u8& img, bool save_alpha)
{
const uint32_t w = img.width();
const uint32_t h = img.height();
std::vector<unsigned char> pixels;
if (save_alpha)
{
pixels.resize(w * h * sizeof(color_quad_u8));
memcpy(&pixels[0], &img.get_pixels()[0], w * h * sizeof(color_quad_u8));
}
else
{
pixels.resize(w * h * 3);
unsigned char* pDst = &pixels[0];
for (uint32_t y = 0; y < h; y++)
for (uint32_t x = 0; x < w; x++, pDst += 3)
pDst[0] = img(x, y)[0], pDst[1] = img(x, y)[1], pDst[2] = img(x, y)[2];
}
return lodepng::encode(pFilename, pixels, w, h, save_alpha ? LCT_RGBA : LCT_RGB) == 0;
}
static float gauss(int x, int y, float sigma_sqr)
{
float pow = expf(-((x * x + y * y) / (2.0f * sigma_sqr)));
float g = (1.0f / (sqrtf((float)(2.0f * M_PI * sigma_sqr)))) * pow;
return g;
}
// size_x/y should be odd
void compute_gaussian_kernel(float* pDst, int size_x, int size_y, float sigma_sqr, uint32_t flags)
{
assert(size_x & size_y & 1);
if (!(size_x | size_y))
return;
int mid_x = size_x / 2;
int mid_y = size_y / 2;
double sum = 0;
for (int x = 0; x < size_x; x++)
{
for (int y = 0; y < size_y; y++)
{
float g;
if ((x > mid_x) && (y < mid_y))
g = pDst[(size_x - x - 1) + y * size_x];
else if ((x < mid_x) && (y > mid_y))
g = pDst[x + (size_y - y - 1) * size_x];
else if ((x > mid_x) && (y > mid_y))
g = pDst[(size_x - x - 1) + (size_y - y - 1) * size_x];
else
g = gauss(x - mid_x, y - mid_y, sigma_sqr);
pDst[x + y * size_x] = g;
sum += g;
}
}
if (flags & cComputeGaussianFlagNormalizeCenterToOne)
{
sum = pDst[mid_x + mid_y * size_x];
}
if (flags & (cComputeGaussianFlagNormalizeCenterToOne | cComputeGaussianFlagNormalize))
{
double one_over_sum = 1.0f / sum;
for (int i = 0; i < size_x * size_y; i++)
pDst[i] = static_cast<float>(pDst[i] * one_over_sum);
if (flags & cComputeGaussianFlagNormalizeCenterToOne)
pDst[mid_x + mid_y * size_x] = 1.0f;
}
if (flags & cComputeGaussianFlagPrint)
{
printf("{\n");
for (int y = 0; y < size_y; y++)
{
printf(" ");
for (int x = 0; x < size_x; x++)
{
printf("%f, ", pDst[x + y * size_x]);
}
printf("\n");
}
printf("}");
}
}
void gaussian_filter(imagef& dst, const imagef& orig_img, uint32_t odd_filter_width, float sigma_sqr, bool wrapping, uint32_t width_divisor, uint32_t height_divisor)
{
assert(odd_filter_width && (odd_filter_width & 1));
odd_filter_width |= 1;
std::vector<float> kernel(odd_filter_width * odd_filter_width);
compute_gaussian_kernel(&kernel[0], odd_filter_width, odd_filter_width, sigma_sqr, cComputeGaussianFlagNormalize);
const int dst_width = orig_img.get_width() / width_divisor;
const int dst_height = orig_img.get_height() / height_divisor;
const int H = odd_filter_width / 2;
const int L = -H;
dst.crop(dst_width, dst_height);
#pragma omp parallel for
for (int oy = 0; oy < dst_height; oy++)
{
for (int ox = 0; ox < dst_width; ox++)
{
vec4F c(0.0f);
for (int yd = L; yd <= H; yd++)
{
int y = oy * height_divisor + (height_divisor >> 1) + yd;
for (int xd = L; xd <= H; xd++)
{
int x = ox * width_divisor + (width_divisor >> 1) + xd;
const vec4F& p = orig_img.get_clamped_or_wrapped(x, y, wrapping, wrapping);
float w = kernel[(xd + H) + (yd + H) * odd_filter_width];
c[0] += p[0] * w;
c[1] += p[1] * w;
c[2] += p[2] * w;
c[3] += p[3] * w;
}
}
dst(ox, oy).set(c[0], c[1], c[2], c[3]);
}
}
}
static void pow_image(const imagef& src, imagef& dst, const vec4F& power)
{
dst.resize(src);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& p = src(x, y);
if ((power[0] == 2.0f) && (power[1] == 2.0f) && (power[2] == 2.0f) && (power[3] == 2.0f))
dst(x, y).set(p[0] * p[0], p[1] * p[1], p[2] * p[2], p[3] * p[3]);
else
dst(x, y).set(powf(p[0], power[0]), powf(p[1], power[1]), powf(p[2], power[2]), powf(p[3], power[3]));
}
}
}
#if 0
static void mul_image(const imagef& src, imagef& dst, const vec4F& mul)
{
dst.resize(src);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& p = src(x, y);
dst(x, y).set(p[0] * mul[0], p[1] * mul[1], p[2] * mul[2], p[3] * mul[3]);
}
}
}
#endif
static void scale_image(const imagef& src, imagef& dst, const vec4F& scale, const vec4F& shift)
{
dst.resize(src);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& p = src(x, y);
vec4F d;
for (uint32_t c = 0; c < 4; c++)
d[c] = scale[c] * p[c] + shift[c];
dst(x, y).set(d[0], d[1], d[2], d[3]);
}
}
}
static void add_weighted_image(const imagef& src1, const vec4F& alpha, const imagef& src2, const vec4F& beta, const vec4F& gamma, imagef& dst)
{
dst.resize(src1);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& s1 = src1(x, y);
const vec4F& s2 = src2(x, y);
dst(x, y).set(
s1[0] * alpha[0] + s2[0] * beta[0] + gamma[0],
s1[1] * alpha[1] + s2[1] * beta[1] + gamma[1],
s1[2] * alpha[2] + s2[2] * beta[2] + gamma[2],
s1[3] * alpha[3] + s2[3] * beta[3] + gamma[3]);
}
}
}
static void add_image(const imagef& src1, const imagef& src2, imagef& dst)
{
dst.resize(src1);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& s1 = src1(x, y);
const vec4F& s2 = src2(x, y);
dst(x, y).set(s1[0] + s2[0], s1[1] + s2[1], s1[2] + s2[2], s1[3] + s2[3]);
}
}
}
static void adds_image(const imagef& src, const vec4F& value, imagef& dst)
{
dst.resize(src);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& p = src(x, y);
dst(x, y).set(p[0] + value[0], p[1] + value[1], p[2] + value[2], p[3] + value[3]);
}
}
}
static void mul_image(const imagef& src1, const imagef& src2, imagef& dst, const vec4F& scale)
{
dst.resize(src1);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& s1 = src1(x, y);
const vec4F& s2 = src2(x, y);
vec4F d;
for (uint32_t c = 0; c < 4; c++)
{
float v1 = s1[c];
float v2 = s2[c];
d[c] = v1 * v2 * scale[c];
}
dst(x, y) = d;
}
}
}
static void div_image(const imagef& src1, const imagef& src2, imagef& dst, const vec4F& scale)
{
dst.resize(src1);
#pragma omp parallel for
for (int y = 0; y < (int)dst.get_height(); y++)
{
for (uint32_t x = 0; x < dst.get_width(); x++)
{
const vec4F& s1 = src1(x, y);
const vec4F& s2 = src2(x, y);
vec4F d;
for (uint32_t c = 0; c < 4; c++)
{
float v = s2[c];
if (v == 0.0f)
d[c] = 0.0f;
else
d[c] = (s1[c] * scale[c]) / v;
}
dst(x, y) = d;
}
}
}
static vec4F avg_image(const imagef& src)
{
vec4F avg(0.0f);
for (uint32_t y = 0; y < src.get_height(); y++)
{
for (uint32_t x = 0; x < src.get_width(); x++)
{
const vec4F& s = src(x, y);
avg += vec4F(s[0], s[1], s[2], s[3]);
}
}
avg /= static_cast<float>(src.get_total_pixels());
return avg;
}
// Reference: https://ece.uwaterloo.ca/~z70wang/research/ssim/index.html
vec4F compute_ssim(const imagef& a, const imagef& b)
{
imagef axb, a_sq, b_sq, mu1, mu2, mu1_sq, mu2_sq, mu1_mu2, s1_sq, s2_sq, s12, smap, t1, t2, t3;
const float C1 = 6.50250f, C2 = 58.52250f;
pow_image(a, a_sq, vec4F(2));
pow_image(b, b_sq, vec4F(2));
mul_image(a, b, axb, vec4F(1.0f));
gaussian_filter(mu1, a, 11, 1.5f * 1.5f);
gaussian_filter(mu2, b, 11, 1.5f * 1.5f);
pow_image(mu1, mu1_sq, vec4F(2));
pow_image(mu2, mu2_sq, vec4F(2));
mul_image(mu1, mu2, mu1_mu2, vec4F(1.0f));
gaussian_filter(s1_sq, a_sq, 11, 1.5f * 1.5f);
add_weighted_image(s1_sq, vec4F(1), mu1_sq, vec4F(-1), vec4F(0), s1_sq);
gaussian_filter(s2_sq, b_sq, 11, 1.5f * 1.5f);
add_weighted_image(s2_sq, vec4F(1), mu2_sq, vec4F(-1), vec4F(0), s2_sq);
gaussian_filter(s12, axb, 11, 1.5f * 1.5f);
add_weighted_image(s12, vec4F(1), mu1_mu2, vec4F(-1), vec4F(0), s12);
scale_image(mu1_mu2, t1, vec4F(2), vec4F(0));
adds_image(t1, vec4F(C1), t1);
scale_image(s12, t2, vec4F(2), vec4F(0));
adds_image(t2, vec4F(C2), t2);
mul_image(t1, t2, t3, vec4F(1));
add_image(mu1_sq, mu2_sq, t1);
adds_image(t1, vec4F(C1), t1);
add_image(s1_sq, s2_sq, t2);
adds_image(t2, vec4F(C2), t2);
mul_image(t1, t2, t1, vec4F(1));
div_image(t3, t1, smap, vec4F(1));
return avg_image(smap);
}
vec4F compute_ssim(const image_u8& a, const image_u8& b, bool luma)
{
image_u8 ta(a), tb(b);
if ((ta.width() != tb.width()) || (ta.height() != tb.height()))
{
fprintf(stderr, "compute_ssim: Cropping input images to equal dimensions\n");
const uint32_t w = std::min(a.width(), b.width());
const uint32_t h = std::min(a.height(), b.height());
ta.crop(w, h);
tb.crop(w, h);
}
if (!ta.width() || !ta.height())
{
assert(0);
return vec4F(0);
}
if (luma)
{
for (uint32_t y = 0; y < ta.height(); y++)
{
for (uint32_t x = 0; x < ta.width(); x++)
{
ta(x, y).set((uint8_t)ta(x, y).get_luma(), ta(x, y).a);
tb(x, y).set((uint8_t)tb(x, y).get_luma(), tb(x, y).a);
}
}
}
imagef fta, ftb;
fta.set(ta);
ftb.set(tb);
return compute_ssim(fta, ftb);
}
bool save_dds(const char* pFilename, uint32_t width, uint32_t height, const void* pBlocks, uint32_t pixel_format_bpp, DXGI_FORMAT dxgi_format, bool srgb, bool force_dx10_header)
{
(void)srgb;
FILE* pFile = NULL;
#ifdef _MSC_VER
fopen_s(&pFile, pFilename, "wb");
#else
pFile = fopen(pFilename, "wb");
#endif
if (!pFile)
{
fprintf(stderr, "Failed creating file %s!\n", pFilename);
return false;
}
fwrite("DDS ", 4, 1, pFile);
DDSURFACEDESC2 desc;
memset(&desc, 0, sizeof(desc));
desc.dwSize = sizeof(desc);
desc.dwFlags = DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT | DDSD_CAPS;
desc.dwWidth = width;
desc.dwHeight = height;
desc.ddsCaps.dwCaps = DDSCAPS_TEXTURE;
desc.ddpfPixelFormat.dwSize = sizeof(desc.ddpfPixelFormat);
desc.ddpfPixelFormat.dwFlags |= DDPF_FOURCC;
desc.lPitch = (((desc.dwWidth + 3) & ~3) * ((desc.dwHeight + 3) & ~3) * pixel_format_bpp) >> 3;
desc.dwFlags |= DDSD_LINEARSIZE;
desc.ddpfPixelFormat.dwRGBBitCount = 0;
if ((!force_dx10_header) &&
((dxgi_format == DXGI_FORMAT_BC1_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC3_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC4_UNORM) ||
(dxgi_format == DXGI_FORMAT_BC5_UNORM)))
{
if (dxgi_format == DXGI_FORMAT_BC1_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', 'T', '1');
else if (dxgi_format == DXGI_FORMAT_BC3_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', 'T', '5');
else if (dxgi_format == DXGI_FORMAT_BC4_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('A', 'T', 'I', '1');
else if (dxgi_format == DXGI_FORMAT_BC5_UNORM)
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('A', 'T', 'I', '2');
fwrite(&desc, sizeof(desc), 1, pFile);
}
else
{
desc.ddpfPixelFormat.dwFourCC = (uint32_t)PIXEL_FMT_FOURCC('D', 'X', '1', '0');
fwrite(&desc, sizeof(desc), 1, pFile);
DDS_HEADER_DXT10 hdr10;
memset(&hdr10, 0, sizeof(hdr10));
// Not all tools support DXGI_FORMAT_BC7_UNORM_SRGB (like NVTT), but ddsview in DirectXTex pays attention to it. So not sure what to do here.
// For best compatibility just write DXGI_FORMAT_BC7_UNORM.
//hdr10.dxgiFormat = srgb ? DXGI_FORMAT_BC7_UNORM_SRGB : DXGI_FORMAT_BC7_UNORM;
hdr10.dxgiFormat = dxgi_format; // DXGI_FORMAT_BC7_UNORM;
hdr10.resourceDimension = D3D10_RESOURCE_DIMENSION_TEXTURE2D;
hdr10.arraySize = 1;
fwrite(&hdr10, sizeof(hdr10), 1, pFile);
}
fwrite(pBlocks, desc.lPitch, 1, pFile);
if (fclose(pFile) == EOF)
{
fprintf(stderr, "Failed writing to DDS file %s!\n", pFilename);
return false;
}
return true;
}
void strip_extension(std::string& s)
{
for (int32_t i = (int32_t)s.size() - 1; i >= 0; i--)
{
if (s[i] == '.')
{
s.resize(i);
break;
}
}
}
void strip_path(std::string& s)
{
for (int32_t i = (int32_t)s.size() - 1; i >= 0; i--)
{
if ((s[i] == '/') || (s[i] == ':') || (s[i] == '\\'))
{
s.erase(0, i + 1);
break;
}
}
}
uint32_t hash_hsieh(const uint8_t* pBuf, size_t len)
{
if (!pBuf || !len)
return 0;
uint32_t h = static_cast<uint32_t>(len);
const uint32_t bytes_left = len & 3;
len >>= 2;
while (len--)
{
const uint16_t* pWords = reinterpret_cast<const uint16_t*>(pBuf);
h += pWords[0];
const uint32_t t = (pWords[1] << 11) ^ h;
h = (h << 16) ^ t;
pBuf += sizeof(uint32_t);
h += h >> 11;
}
switch (bytes_left)
{
case 1:
h += *reinterpret_cast<const signed char*>(pBuf);
h ^= h << 10;
h += h >> 1;
break;
case 2:
h += *reinterpret_cast<const uint16_t*>(pBuf);
h ^= h << 11;
h += h >> 17;
break;
case 3:
h += *reinterpret_cast<const uint16_t*>(pBuf);
h ^= h << 16;
h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18;
h += h >> 11;
break;
default:
break;
}
h ^= h << 3;
h += h >> 5;
h ^= h << 4;
h += h >> 17;
h ^= h << 25;
h += h >> 6;
return h;
}
float compute_block_max_std_dev(const color_quad_u8* pPixels, uint32_t block_width, uint32_t block_height, uint32_t num_comps)
{
tracked_stat comp_stats[4];
for (uint32_t y = 0; y < block_height; y++)
{
for (uint32_t x = 0; x < block_width; x++)
{
const color_quad_u8* pPixel = pPixels + x + y * block_width;
for (uint32_t c = 0; c < num_comps; c++)
comp_stats[c].update(pPixel->m_c[c]);
}
}
float max_std_dev = 0.0f;
for (uint32_t i = 0; i < num_comps; i++)
max_std_dev = std::max(max_std_dev, comp_stats[i].get_std_dev());
return max_std_dev;
}
const uint32_t ASTC_SIG = 0x5CA1AB13;
#pragma pack(push, 1)
struct astc_header
{
uint32_t m_sig;
uint8_t m_block_x;
uint8_t m_block_y;
uint8_t m_block_z;
uint8_t m_width[3];
uint8_t m_height[3];
uint8_t m_depth[3];
};
#pragma pack(pop)
bool save_astc_file(const char* pFilename, block16_vec& blocks, uint32_t width, uint32_t height, uint32_t block_width, uint32_t block_height)
{
FILE* pFile = nullptr;
#ifdef _MSC_VER
fopen_s(&pFile, pFilename, "wb");
#else
pFile = fopen(pFilename, "wb");
#endif
if (!pFile)
return false;
astc_header hdr;
memset(&hdr, 0, sizeof(hdr));
hdr.m_sig = ASTC_SIG;
hdr.m_block_x = (uint8_t)block_width;
hdr.m_block_y = (uint8_t)block_height;
hdr.m_block_z = 1;
hdr.m_width[0] = (uint8_t)(width);
hdr.m_width[1] = (uint8_t)(width >> 8);
hdr.m_width[2] = (uint8_t)(width >> 16);
hdr.m_height[0] = (uint8_t)(height);
hdr.m_height[1] = (uint8_t)(height >> 8);
hdr.m_height[2] = (uint8_t)(height >> 16);
hdr.m_depth[0] = 1;
fwrite(&hdr, sizeof(hdr), 1, pFile);
fwrite(blocks.data(), 16, blocks.size(), pFile);
if (fclose(pFile) == EOF)
return false;
return true;
}
bool load_astc_file(const char* pFilename, block16_vec& blocks, uint32_t& width, uint32_t& height, uint32_t& block_width, uint32_t& block_height)
{
FILE* pFile = nullptr;
#ifdef _MSC_VER
fopen_s(&pFile, pFilename, "rb");
#else
pFile = fopen(pFilename, "rb");
#endif
if (!pFile)
return false;
astc_header hdr;
if (fread(&hdr, sizeof(hdr), 1, pFile) != 1)
{
fclose(pFile);
return false;
}
if (hdr.m_sig != ASTC_SIG)
{
fclose(pFile);
return false;
}
width = hdr.m_width[0] + (hdr.m_width[1] << 8) + (hdr.m_width[2] << 16);
height = hdr.m_height[0] + (hdr.m_height[1] << 8) + (hdr.m_height[2] << 16);
uint32_t depth = hdr.m_depth[0] + (hdr.m_depth[1] << 8) + (hdr.m_depth[2] << 16);
if ((width < 1) || (width > 32768) || (height < 1) || (height > 32768))
return false;
if ((hdr.m_block_z != 1) || (depth != 1))
return false;
block_width = hdr.m_block_x;
block_height = hdr.m_block_y;
if ((block_width < 4) || (block_width > 12) || (block_height < 4) || (block_height > 12))
return false;
uint32_t blocks_x = (width + block_width - 1) / block_width;
uint32_t blocks_y = (height + block_height - 1) / block_height;
uint32_t total_blocks = blocks_x * blocks_y;
blocks.resize(total_blocks);
if (fread(blocks.data(), 16, total_blocks, pFile) != total_blocks)
{
fclose(pFile);
return false;
}
fclose(pFile);
return true;
}
uint32_t get_deflate_size(const void* pData, size_t data_size)
{
size_t comp_size = 0;
void* pPre_RDO_Comp_data = tdefl_compress_mem_to_heap(pData, data_size, &comp_size, TDEFL_MAX_PROBES_MASK);// TDEFL_DEFAULT_MAX_PROBES);
mz_free(pPre_RDO_Comp_data);
if (comp_size > UINT32_MAX)
return UINT32_MAX;
return (uint32_t)comp_size;
}
} // namespace utils