-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathac_numba.py
264 lines (214 loc) · 7.36 KB
/
ac_numba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import typing
import numpy as np
import numba
try:
from numba.experimental import jitclass
except ImportError:
from numba import jitclass
@numba.njit('int64(int64)', cache=True)
def _ceil_pow2(n: int) -> int:
x = 0
while (1 << x) < n:
x += 1
return x
TYPE_S = numba.types.int64
TYPE_F = numba.types.int64
@numba.njit('int64(int64, int64)', cache=True)
def f(a, b):
return a if a > b else b
TYPE_FUNC = numba.typeof(f)
@jitclass([("_op", TYPE_FUNC),
("_e", TYPE_S),
("_mapping", TYPE_FUNC),
("_composition", TYPE_FUNC),
("_id", TYPE_F),
("_n", numba.types.int64),
("_log", numba.types.int64),
("_size", numba.types.int64),
("_d", TYPE_S[:]),
("_lz", TYPE_F[:]),
])
# ref:
# https://github.com/not522/ac-library-python/blob/a30b7e590271d7b77459946695ae8ce984e50f0a/atcoder/lazysegtree.py
class LazySegTree:
def __init__(
self,
op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
mapping: typing.Callable[[typing.Any, typing.Any], typing.Any],
composition: typing.Callable[[typing.Any, typing.Any], typing.Any],
id_: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
self._op = op
self._e = e
self._mapping = mapping
self._composition = composition
self._id = id_
# if isinstance(v, int):
# v = [e] * v
self._n, = v.shape
self._log = _ceil_pow2(self._n)
self._size = 1 << self._log
self._d = np.full(2 * self._size, e)
self._lz = np.full(self._size, self._id)
self._d[self._size: self._size + self._n] = v
# for i in range(self._n):
# self._d[self._size + i] = v[i]
for i in range(self._size - 1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
for i in range(self._log, 0, -1):
self._push(p >> i)
self._d[p] = x
for i in range(1, self._log + 1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
p += self._size
for i in range(self._log, 0, -1):
self._push(p >> i)
return self._d[p]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
if left == right:
return self._e
left += self._size
right += self._size
for i in range(self._log, 0, -1):
if ((left >> i) << i) != left:
self._push(left >> i)
if ((right >> i) << i) != right:
self._push(right >> i)
sml = self._e
smr = self._e
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def apply(self, left: int, right: typing.Optional[int] = None,
f: typing.Optional[typing.Any] = None) -> None:
assert f is not None
if right is None:
p = left
assert 0 <= left < self._n
p += self._size
for i in range(self._log, 0, -1):
self._push(p >> i)
self._d[p] = self._mapping(f, self._d[p])
for i in range(1, self._log + 1):
self._update(p >> i)
else:
assert 0 <= left <= right <= self._n
if left == right:
return
left += self._size
right += self._size
for i in range(self._log, 0, -1):
if ((left >> i) << i) != left:
self._push(left >> i)
if ((right >> i) << i) != right:
self._push((right - 1) >> i)
l2 = left
r2 = right
while left < right:
if left & 1:
self._all_apply(left, f)
left += 1
if right & 1:
right -= 1
self._all_apply(right, f)
left >>= 1
right >>= 1
left = l2
right = r2
for i in range(1, self._log + 1):
if ((left >> i) << i) != left:
self._update(left >> i)
if ((right >> i) << i) != right:
self._update((right - 1) >> i)
def max_right(
self, left: int, g: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert g(self._e)
if left == self._n:
return self._n
left += self._size
for i in range(self._log, 0, -1):
self._push(left >> i)
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left % 2 == 0:
left >>= 1
if not g(self._op(sm, self._d[left])):
while left < self._size:
self._push(left)
left *= 2
if g(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left - self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int, g: typing.Any) -> int:
assert 0 <= right <= self._n
assert g(self._e)
if right == 0:
return 0
right += self._size
for i in range(self._log, 0, -1):
self._push((right - 1) >> i)
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right % 2:
right >>= 1
if not g(self._op(self._d[right], sm)):
while right < self._size:
self._push(right)
right = 2 * right + 1
if g(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right + 1 - self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2 * k], self._d[2 * k + 1])
def _all_apply(self, k: int, f: typing.Any) -> None:
self._d[k] = self._mapping(f, self._d[k])
if k < self._size:
self._lz[k] = self._composition(f, self._lz[k])
def _push(self, k: int) -> None:
self._all_apply(2 * k, self._lz[k])
self._all_apply(2 * k + 1, self._lz[k])
self._lz[k] = self._id
@numba.njit('void(int64[:])', cache=True)
def solve(inp):
w, n = inp[:2]
sg = LazySegTree(f, 0, f, f, 0, np.zeros(w))
for i in range(n):
l = inp[i * 2 + 2]
r = inp[i * 2 + 3]
l -= 1
x = sg.prod(l, r) + 1
print(x)
sg.apply(l, r, x)
def main():
solve(np.fromstring(open(0).read(), dtype=np.int64, sep=' '))
if __name__ == "__main__":
main()