-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathfast_kilonerf_renderer.py
189 lines (160 loc) · 11.3 KB
/
fast_kilonerf_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import torch
import kilonerf_cuda
from utils import PerfMonitor, ConfigManager
from run_nerf_helpers import get_rays, replace_transparency_by_background_color
class FastKiloNeRFRenderer():
def __init__(self, c2w, intrinsics, background_color, occupancy_grid, multi_network, domain_mins, domain_maxs,
white_bkgd, max_depth_index, min_distance, max_distance, performance_monitoring, occupancy_resolution, max_samples_per_ray, transmittance_threshold):
self.set_camera_pose(c2w)
self.intrinsics = intrinsics
self.background_color = background_color
self.occupancy_grid = occupancy_grid
self.multi_network = multi_network
self.domain_mins = domain_mins
self.domain_maxs = domain_maxs
self.white_bkgd = white_bkgd
self.max_depth_index = max_depth_index
self.min_distance = min_distance
self.max_distance = max_distance
self.performance_monitoring = performance_monitoring
self.occupancy_resolution = occupancy_resolution
self.max_samples_per_ray = max_samples_per_ray
self.transmittance_threshold = transmittance_threshold
# Get ray directions for abitrary render pose
# Precompute distances between sampling points, which vary along the pixel dimension
_, rays_d = get_rays(intrinsics, self.c2w) # H x W x 3
direction_norms = torch.norm(rays_d, dim=-1) # H x W
self.distance_between_samples = (1 / (self.max_depth_index - 1)) * (self.max_distance - self.min_distance)
self.constant_dists = (self.distance_between_samples * direction_norms).view(-1).unsqueeze(1) # H * W x 1
self.rgb_map = torch.empty([self.intrinsics.H, self.intrinsics.W, 3], dtype=torch.float, device=occupancy_grid.device)
self.rgb_map_pointer = self.rgb_map.data_ptr()
def set_rgb_map_pointer(self, rgb_map_pointer):
self.rgb_map = None
self.rgb_map_pointer = rgb_map_pointer
def set_camera_pose(self, c2w):
self.c2w = c2w[:3, :4]
def render(self):
PerfMonitor.add('start')
PerfMonitor.is_active = self.performance_monitoring
rays_o, rays_d = get_rays(self.intrinsics, self.c2w, expand_origin=False)
PerfMonitor.add('ray directions', ['preprocessing'])
origin = rays_o
directions = rays_d.reshape(-1, 3) # directions are *not* normalized.
res = self.occupancy_resolution
global_domain_min, global_domain_max = ConfigManager.get_global_domain_min_and_max(directions.device)
global_domain_size = global_domain_max - global_domain_min
occupancy_resolution = torch.tensor(res, dtype=torch.long, device=directions.device)
strides = torch.tensor([res[2] * res[1], res[2], 1], dtype=torch.int, device=directions.device) # assumes row major ordering
voxel_size = global_domain_size / occupancy_resolution
num_rays = directions.size(0)
active_ray_mask = torch.empty(num_rays, dtype=torch.bool, device=directions.device)
depth_indices = torch.empty(num_rays, dtype=torch.short, device=directions.device)
acc_map = torch.empty([self.intrinsics.H, self.intrinsics.W], dtype=torch.float, device=directions.device)
# the final transmittance of a pass will be the initial transmittance of the next
transmittance = torch.empty([self.intrinsics.H, self.intrinsics.W], dtype=torch.float, device=directions.device)
PerfMonitor.add('prep', ['preprocessing'])
is_initial_query = True
is_final_pass = False
pass_idx = 0
integrate_num_blocks = 40
integrate_num_threads = 512
while not is_final_pass:
if type(self.max_samples_per_ray) is list:
# choose max samples per ray depending on the pass
# in the later passes we can sample more per ray to avoid too much overhead from too many passes
current_max_samples_per_ray = self.max_samples_per_ray[min(pass_idx, len(self.max_samples_per_ray) - 1)]
else:
# just use the same number of samples for all passes
current_max_samples_per_ray = self.max_samples_per_ray
# Compute query indices along the rays and determine assignment of query location to networks
# Tunable CUDA hyperparameters
kernel_max_num_blocks = 40
kernel_max_num_threads = 512
version = 0
query_indices, assigned_networks = kilonerf_cuda.generate_query_indices_on_ray(origin, directions, self.occupancy_grid, active_ray_mask, depth_indices, voxel_size,
global_domain_min, global_domain_max, strides, self.distance_between_samples, current_max_samples_per_ray, self.max_depth_index, self.min_distance, is_initial_query,
kernel_max_num_blocks, kernel_max_num_threads, version)
PerfMonitor.add('sample query points', ['preprocessing'])
with_explicit_mask = True
query_indices = query_indices.view(-1)
assigned_networks = assigned_networks.view(-1)
if with_explicit_mask:
active_samples_mask = assigned_networks != -1
assigned_networks = assigned_networks[active_samples_mask]
# when with_expclit_mask = False: Sort all points, including those with assigned_network == -1
# Points with assigned_network == -1 will be placed in the beginning and can then be filtered by moving the start of the array (zero cost)
#assigned_networks, reorder_indices = torch.sort(assigned_networks) # sorting via PyTorch is significantly slower
#reorder_indices = torch.arange(assigned_networks.size(0), dtype=torch.int32, device=assigned_networks.device)
#kilonerf_cuda.sort_by_key_int16_int32(assigned_networks, reorder_indices) # stable sort does not seem to be slower/faster
reorder_indices = torch.arange(assigned_networks.size(0), dtype=torch.int64, device=assigned_networks.device)
kilonerf_cuda.sort_by_key_int16_int64(assigned_networks, reorder_indices)
PerfMonitor.add('sort', ['reorder and backorder'])
# make sure that also batch sizes are given for networks which are queried 0 points
contained_nets, batch_size_per_network_incomplete = torch.unique_consecutive(assigned_networks, return_counts=True)
if not with_explicit_mask:
num_removable_points = batch_size_per_network_incomplete[0]
contained_nets = contained_nets[1:].to(torch.long)
batch_size_per_network_incomplete = batch_size_per_network_incomplete[1:]
else:
contained_nets = contained_nets.to(torch.long)
batch_size_per_network = torch.zeros(self.multi_network.num_networks, device=query_indices.device, dtype=torch.long)
batch_size_per_network[contained_nets] = batch_size_per_network_incomplete
ends = batch_size_per_network.cumsum(0).to(torch.int32)
starts = ends - batch_size_per_network.to(torch.int32)
PerfMonitor.add('batch_size_per_network', ['reorder and backorder'])
# Remove all points which are assigned to no network (those points are in empty space or outside the global domain)
if with_explicit_mask:
query_indices = query_indices[active_samples_mask]
else:
reorder_indices = reorder_indices[num_removable_points:] # just moving a pointer
PerfMonitor.add('remove points', ['reorder and backorder'])
# Reorder the query indices
query_indices = query_indices[reorder_indices]
#query_indices = kilonerf_cuda.gather_int32(reorder_indices, query_indices)
query_indices = query_indices
PerfMonitor.add('reorder', ['reorder and backorder'])
num_points_to_process = query_indices.size(0) if query_indices.ndim > 0 else 0
#print("#points to process:", num_points_to_process, flush=True)
if num_points_to_process == 0:
break
# Evaluate the network
network_eval_num_blocks = -1 # ignored currently
compute_capability = torch.cuda.get_device_capability(query_indices.device)
if compute_capability == (7, 5):
network_eval_num_threads = 512 # for some reason the compiler uses more than 96 registers for this CC, so we cannot launch 640 threads
else:
network_eval_num_threads = 640
version = 0
raw_outputs = kilonerf_cuda.network_eval_query_index(query_indices, self.multi_network.serialized_params, self.domain_mins, self.domain_maxs, starts, ends, origin,
self.c2w[:3, :3].contiguous(), self.multi_network.num_networks, self.multi_network.hidden_layer_size,
self.intrinsics.H, self.intrinsics.W, self.intrinsics.cx, self.intrinsics.cy, self.intrinsics.fx, self.intrinsics.fy, self.max_depth_index, self.min_distance, self.distance_between_samples,
network_eval_num_blocks, network_eval_num_threads, version)
PerfMonitor.add('fused network eval', ['network query'])
# Backorder outputs
if with_explicit_mask:
raw_outputs_backordered = torch.empty_like(raw_outputs)
raw_outputs_backordered[reorder_indices] = raw_outputs
#raw_outputs_backordered = kilonerf_cuda.scatter_int32_float4(reorder_indices, raw_outputs)
del raw_outputs
raw_outputs_full = torch.zeros(num_rays * current_max_samples_per_ray, 4, dtype=torch.float, device=raw_outputs_backordered.device)
raw_outputs_full[active_samples_mask] = raw_outputs_backordered
else:
raw_outputs_full = torch.zeros(num_rays * current_max_samples_per_ray, 4, dtype=torch.float, device=raw_outputs.device)
raw_outputs_full[reorder_indices] = raw_outputs
PerfMonitor.add('backorder', ['reorder and backorder'])
# Integrate sampled densities and colors along each ray to render the final image
version = 0
kilonerf_cuda.integrate(raw_outputs_full, self.constant_dists, self.rgb_map_pointer, acc_map, transmittance, active_ray_mask, num_rays, current_max_samples_per_ray,
self.transmittance_threshold, is_initial_query, integrate_num_blocks, integrate_num_threads, version)
is_final_pass = not active_ray_mask.any().item()
is_initial_query = False
if not is_final_pass:
PerfMonitor.add('integration', ['integration'])
pass_idx += 1
if self.white_bkgd:
kilonerf_cuda.replace_transparency_by_background_color(self.rgb_map_pointer, acc_map, self.background_color, integrate_num_blocks, integrate_num_threads)
PerfMonitor.is_active = True
PerfMonitor.add('integration', ['integration'])
elapsed_time = PerfMonitor.log_and_reset(self.performance_monitoring)
self.rgb_map = self.rgb_map.view(self.intrinsics.H, self.intrinsics.W, 3) if self.rgb_map is not None else None
return self.rgb_map, elapsed_time