diff --git a/examples/python/car/main.py b/examples/python/car/main.py index d7cc2f43ab82..8745f064a026 100755 --- a/examples/python/car/main.py +++ b/examples/python/car/main.py @@ -23,9 +23,6 @@ def log_car_data() -> None: # In the viewer you can select how to view entities - by frame_nr or the built-in `log_time`. rr.set_time_sequence("frame_nr", sample.frame_idx) - # We log the projected points in the "world" space: - rr.log_points("world/points", sample.point_cloud) - # Log the camera pose: rr.log_rigid3( "world/camera", @@ -159,7 +156,6 @@ class SampleFrame: frame_idx: int camera: CameraParameters depth_image_mm: npt.NDArray[np.float32] - point_cloud: npt.NDArray[np.float32] rgb_image: npt.NDArray[np.float32] car_bbox: Tuple[npt.NDArray[np.int32], npt.NDArray[np.int32]] @@ -177,28 +173,6 @@ def __init__(self, image_width: int, image_height: int) -> None: # Pre-generate image containing the x and y coordinates per pixel self.u_coords, self.v_coords = np.meshgrid(np.arange(0, self.w), np.arange(0, self.h)) - def back_project( - self, - depth_image_mm: npt.NDArray[np.float32], - ) -> npt.NDArray[np.float32]: - """ - Given a depth image, generate a matching point cloud. - - Parameters - ---------- - depth_image_mm - Depth image expressed in millimeters - - """ - - # Apply inverse of the `intrinsics` matrix: - z = depth_image_mm.reshape(-1) / 1000.0 - x = (self.u_coords.reshape(-1).astype(float) - self.u_center) * z / self.focal_length - y = (self.v_coords.reshape(-1).astype(float) - self.v_center) * z / self.focal_length - - back_projected = np.vstack((x, y, z)).T - return back_projected - def render_dummy_slanted_plane_mm(self) -> npt.NDArray[np.float32]: """Renders a depth image of a slanted plane in millimeters.""" return 1000.0 * 1.0 / (0.01 + 0.4 * self.v_coords / self.h) @@ -266,12 +240,10 @@ def generate_car_data(num_frames: int) -> Iterator[SampleFrame]: depth_image_mm = depth_background_mm.copy() rgb = rgb_background.copy() car.draw(depth_image_mm=depth_image_mm, rgb=rgb) - point_cloud = camera.back_project(depth_image_mm=depth_image_mm) sample = SampleFrame( frame_idx=i, camera=camera.parameters, depth_image_mm=depth_image_mm, - point_cloud=point_cloud, rgb_image=rgb, car_bbox=(car.min, car.size), ) diff --git a/examples/python/nyud/main.py b/examples/python/nyud/main.py index 9c985bcf0e9f..da577c687d07 100755 --- a/examples/python/nyud/main.py +++ b/examples/python/nyud/main.py @@ -44,23 +44,6 @@ def camera_intrinsics(image: npt.NDArray[np.uint8]) -> npt.NDArray[np.uint8]: return np.array(((focal_length, 0, u_center), (0, focal_length, v_center), (0, 0, 1))) -def back_project(depth_image: npt.NDArray[np.float32]) -> npt.NDArray[np.float32]: - """Given a depth image, generate a matching point cloud.""" - (h, w) = depth_image.shape - (u_center, v_center, focal_length) = camera_for_image(h, w) - - # Pre-generate image containing the x and y coordinates per pixel - u_coords, v_coords = np.meshgrid(np.arange(0, w), np.arange(0, h)) - - # Apply inverse of the intrinsics matrix: - z = depth_image.reshape(-1) - x = (u_coords.reshape(-1).astype(float) - u_center) * z / focal_length - y = (v_coords.reshape(-1).astype(float) - v_center) * z / focal_length - - back_projected = np.vstack((x, y, z)).T - return back_projected - - def read_image_rgb(buf: bytes) -> npt.NDArray[np.uint8]: """Decode an image provided in `buf`, and interpret it as RGB data.""" np_buf: npt.NDArray[np.uint8] = np.ndarray(shape=(1, len(buf)), dtype=np.uint8, buffer=buf) @@ -77,9 +60,7 @@ def read_image(buf: bytes) -> npt.NDArray[np.uint8]: return img -def log_nyud_data(recording_path: Path, subset_idx: int = 0, depth_image_interval: int = 1) -> None: - depth_images_counter = 0 - +def log_nyud_data(recording_path: Path, subset_idx: int = 0) -> None: rr.log_view_coordinates("world", up="-Y", timeless=True) with zipfile.ZipFile(recording_path, "r") as archive: @@ -105,32 +86,26 @@ def log_nyud_data(recording_path: Path, subset_idx: int = 0, depth_image_interva rr.log_image("world/camera/image/rgb", img_rgb) elif f.filename.endswith(".pgm"): - if depth_images_counter % depth_image_interval == 0: - buf = archive.read(f) - img_depth = read_image(buf) - - point_cloud = back_project(depth_image=img_depth / DEPTH_IMAGE_SCALING) - rr.log_points("world/points", point_cloud, colors=np.array([255, 255, 255, 255])) - - # Log the camera transforms: - translation = [0, 0, 0] - rotation_q = [0, 0, 0, 1] - rr.log_rigid3( - "world/camera", - parent_from_child=(translation, rotation_q), - xyz="RDF", # X=Right, Y=Down, Z=Forward - ) - rr.log_pinhole( - "world/camera/image", - child_from_parent=camera_intrinsics(img_depth), - width=img_depth.shape[1], - height=img_depth.shape[0], - ) - - # Log the depth image to the cameras image-space: - rr.log_depth_image("world/camera/image/depth", img_depth, meter=DEPTH_IMAGE_SCALING) - - depth_images_counter += 1 + buf = archive.read(f) + img_depth = read_image(buf) + + # Log the camera transforms: + translation = [0, 0, 0] + rotation_q = [0, 0, 0, 1] + rr.log_rigid3( + "world/camera", + parent_from_child=(translation, rotation_q), + xyz="RDF", # X=Right, Y=Down, Z=Forward + ) + rr.log_pinhole( + "world/camera/image", + child_from_parent=camera_intrinsics(img_depth), + width=img_depth.shape[1], + height=img_depth.shape[0], + ) + + # Log the depth image to the cameras image-space: + rr.log_depth_image("world/camera/image/depth", img_depth, meter=DEPTH_IMAGE_SCALING) def ensure_recording_downloaded(name: str) -> Path: @@ -184,23 +159,15 @@ def download_progress(url: str, dst: Path) -> None: help="Name of the NYU Depth Dataset V2 recording", ) parser.add_argument("--subset-idx", type=int, default=0, help="The index of the subset of the recording to use.") - parser.add_argument( - "--depth-image-interval", - type=int, - default=8, - help="The number of rgb images logged for each depth image. (min value 1)", - ) rr.script_add_args(parser) args = parser.parse_args() rr.script_setup(args, "nyud") recording_path = ensure_recording_downloaded(args.recording) - depth_image_interval = max(args.depth_image_interval, 1) log_nyud_data( recording_path=recording_path, subset_idx=args.subset_idx, - depth_image_interval=depth_image_interval, ) rr.script_teardown(args)