-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathivlsmm.sthlp
138 lines (106 loc) · 4.38 KB
/
ivlsmm.sthlp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
{smcl}
{* *! version 0.1.0 03sep2021 Tom Palmer}{...}
{vieweralsosee "ivonesamplemr" "help ivonesamplemr"}{...}
{viewerjumpto "Syntax" "ivlsmm##syntax"}{...}
{viewerjumpto "Description" "ivlsmm##description"}{...}
{viewerjumpto "Options" "ivlsmm##options"}{...}
{viewerjumpto "Examples" "ivlsmm##examples"}{...}
{viewerjumpto "Stored results" "ivlsmm##results"}{...}
{viewerjumpto "References" "ivlsmm##references"}{...}
{viewerjumpto "Author" "ivlsmm##author"}{...}
{title:Title}
{p 5}
{bf:ivlsmm} {hline 2} (double) Logistic structural mean model
{p_end}
{marker syntax}{...}
{title:Syntax}
{p 8 14 2}
{cmd:ivlsmm} {depvar} [{it:{help varlist:varlist1}}]
{cmd:(}{it:{help varlist:varlist2}} {cmd:=}
{it:{help varlist:varlist_iv}}{cmd:)} {ifin}
[{it:{help gmm##weight:weight}}]
[{cmd:,} {it:options}]
{phang}
{it:varlist1} is the list of exogenous variables.{p_end}
{phang}
{it:varlist2} is the list of endogenous variables.{p_end}
{phang}
{it:varlist_iv} is the list of exogenous variables used with {it:varlist1}
as instruments for {it:varlist2}.
{synoptset 20 tabbed}{...}
{synopthdr}
{synoptline}
{synopt:{opt am:xb(lc:varlist)}}The linear predictor for the association model,
by default the instruments and exogenous variables are included{p_end}
{synopt:{opt from(matrix)}}initial values for the parameter estimates for both association and causal models{p_end}
{synopt:{opt l:evel(#)}}set confidence level; default is {cmd:level(95)}{p_end}
{synopt:{opt gmm_options}}Options passed to {help gmm}
{p_end}
{marker description}{...}
{title:Description}
{pstd}
{cmd:ivlsmm} implements the double logistic structural mean model (LSMM) of
{help ivlsmm##vansteelandt:Vansteelandt and Goetghebeur (2003)}
which is a generalisation of the LSMM of
{help ivlsmm##robins:Robins (1989)}.
{pstd}{cmd:ivlsmm} is implemented using a call to {help gmm}.
{marker options}{...}
{title:Options}
{phang}
{opt level(#)}; see {helpb estimation options##level():[R] estimation options}.
{marker examples}{...}
{title:Examples}
{pstd}Read in binary outcome data; y outcome, x exposure, w covariate, z* instrumental variables (genotypes).{p_end}
{phang2}{cmd:.} {stata "use https://raw.github.com/remlapmot/ivonesamplemr/main/data/ivbinoutdata, clear"}{p_end}
{pstd}Fit the model with a single instrumental variable.{p_end}
{phang2}{cmd:.} {stata "ivlsmm y (x = z1)"}{p_end}
{pstd}Fit the model with multiple instruments.{p_end}
{phang2}{cmd:.} {stata "ivlsmm y (x = z1 z2 z3)"}{p_end}
{pstd}Fit the model with multiple exposures, and instruments, and adjusting for w.{p_end}
{phang2}{cmd:.} {stata "ivlsmm y w (x1 x2 = z1 z2 z3)"}{p_end}
{marker results}{...}
{title:Stored results}
{pstd}
To see the results {cmd:ivlsmm} stores in {cmd:e()} issue {cmd:ereturn list} after running the command.
{pstd}
{cmd:ivlsmm} stores the following in {cmd:r()}:
{synoptset 20 tabbed}{...}
{p2col 5 20 24 2: Matrices}{p_end}
{synopt:{cmd:r(table)}}Coefficient table with rownames: b, se, z, pvalue, ll, ul, df, crit, eform{p_end}
{marker references}{...}
{title:References}
{marker clarke}{...}
{phang}
Clarke PS, Palmer TM, Windmeijer F.
Estimating structural mean models with multiple instrumental variables using the Generalised Method of Moments.
Statistical Science, 2015, 30, 1, 96-117.
{browse "https://doi.org/10.1214/14-STS503":DOI}
{p_end}
{marker palmer-2011}{...}
{phang}
Palmer TM, Sterne JAC, Harbord RM, Lawlor DA, Sheehan NA, Meng S, Granell R, Davey Smith G, Didelez V.
Instrumental variable estimation of causal risk ratios and causal odds
ratios in Mendelian randomization analyses.
American Journal of Epidemiology, 2011, 173, 12, 1392-1403.
{browse "https://doi.org/10.1093/aje/kwr026":DOI}
{p_end}
{marker robins}{...}
{phang}
Robins JM.
The analysis of randomised and nonrandomised AIDS treatment trials using a new approach to
causal inference in longitudinal studies.
In Health Service Research Methodology: A Focus on AIDS
(L. Sechrest, H. Freeman and A. Mulley, eds.).
1989. 113–159. US Public Health Service, National Center for Health Services Research, Washington, DC.
{p_end}
{marker vansteelandt}{...}
{phang}
Vansteelandt S, Goetghebeur E.
Causal inference with generalized structural mean models.
Journal of the Royal Statistical Society (Series B).
2003, 65, 4, 817-835.
{browse "https://doi.org/10.1046/j.1369-7412.2003.00417.x":DOI}
{p_end}
{marker author}{...}
{title:Author}
INCLUDE help ivonesamplemr-author