-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfig6.tex
81 lines (68 loc) · 2.98 KB
/
fig6.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
\documentclass[11pt]{article}
\input{preamble.tex}
\usetikzlibrary{pgfplots.groupplots}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\usepackage{pgfplots,pgfplotstable}
\usepgfplotslibrary{fillbetween}
\pgfplotsset{compat=1.10}
\usetikzlibrary{matrix,arrows,decorations.pathmorphing}
\newcommand{\errorband}[6]{ \pgfplotstableread{#1}\datatable \addplot
[name path=pluserror,draw=none,no markers,forget plot] table
[x={#2},y expr=\thisrow{#3}+\thisrow{#4}] {\datatable};
\addplot [name path=minuserror,draw=none,no markers,forget plot]
table [x={#2},y expr=\thisrow{#3}-\thisrow{#4}] {\datatable};
\addplot [forget plot,fill=#5,opacity=#6]
fill between[on layer={},of=pluserror and minuserror];
\addplot [#5,thick,no markers]
table [x={#2},y={#3}] {\datatable};
}
\begin{document}
\begin{figure}[h!]
\begin{center}
\begin{tikzpicture}
\begin{groupplot}[
title style={at={(0.5,-0.3)},anchor=north}, group
style={group size=2 by 1, horizontal sep=2cm },
width=0.5\textwidth, xticklabel style={/pgf/number
format/fixed, /pgf/number format/precision=3}, yticklabel
style={/pgf/number format/fixed, /pgf/number
format/precision=5}, ymin = 0] % left panel
\nextgroupplot[xlabel = {$\lambda$},ylabel = {relative sample
complexity},title={(a)}]
\errorband{../fig/generalization_n10.dat}{0}{3}{4}{blue}{0.2}
\addlegendentry{AR} %
\errorband{../fig/generalization_n10.dat}{0}{5}{6}{red}{0.2}
\addlegendentry{PLPAC} %
\errorband{../fig/generalization_n10.dat}{0}{7}{8}{brown}{0.2}
\addlegendentry{BTMB}
% right panel
\nextgroupplot[xlabel = {$\lambda$},ylabel =
{failure probability},title={(b)}] \addplot +[mark=x] table[x
index=0,y index=9]{../fig/generalization_n10.dat};
\addlegendentry{AR} %
\addplot +[mark=x] table[x index=0,y
index=10]{../fig/generalization_n10.dat}; \addlegendentry{PLPAC} %
\addplot +[mark=x] table[x index=0,y
index=11]{../fig/generalization_n10.dat}; \addlegendentry{BTMB}
\end{groupplot}
\end{tikzpicture}
\end{center}
%
\caption{
%\label{fig:violationBTL} (a) Relative sample complexity
% defined as the number of comparisons until termination, $\numcmp$,
% divided by the complexity parameter $\complexityP(\score(\Pmat))$,
% and (b) failure probability on a BTL model $\pmat$ with
% $\numitems=10$ and with a fraction of $\lambda$ of the off-diagonals
% of $\pmat$ substituted by a random pairwise comparison probability.
% The model transitions from a BTL model to a random pairwise
% comparison matrix in $\lambda$; the closer $\lambda$ to zero the
% closer $\pmat$ to the original BTL model. The results show that,
% while the AR algorithm yields an $\delta$-accurate ranking after
% $O(\complexityP(\score(\Pmat)))$ comparisons, irrespectively of
% $\lambda$, the sample complexity and more importantly the failure
% probability of the PLPAC and BTMB algorithms become very large in
% $\lambda$.
}
\end{figure}
\end{document}